Skip to main content

Community Repository Search Results

resource project Public Programs
The Decapoda - shrimp, lobsters, and crabs - are an economically important, diverse group of animals whose geologic history extends back 400 million years. Living representatives, numbering over 15,000 species, are global in distribution and nearly ubiquitous in oceanic and non-oceanic environments. They exert a major impact on ecosystems; understanding the dynamics of their fossil record will illuminate their historical impact on ecosystems. We will test the hypothesis that decapods are arrayed in a series of discrete evolutionary faunas; remarkably, the vast array of living and fossil decapods in diverse interrelated groups have exploited four basic body plans repeatedly. Other hypotheses to be tested are that the Decapoda have repeatedly adopted a limited number of baupläne, or generalized architectures, throughout their history; that they have experienced explosive evolutionary radiations followed by periods of no determinable change; and that they are generally resistant to mass extinction events. These hypotheses will be tested using a unique dataset compiled and assessed by the Principle Investigators: a compilation of all fossil decapod species, arrayed in a classification scheme including fossil and living taxa, with geologic and geographic ranges of all species, including a phylogeny (i.e. "family tree") for many sub-groups within the Decapoda. The dataset will be expanded to include ecological data for each taxon and will be entered into the Paleobiology Database, an NSF-supported vehicle for analyzing the fossil record. Employing its methodology, patterns of diversity and macroevolution of the decapods will be generated at levels ranging from the entire Order to species level. This will result in a comprehensive analysis of macroevolutionary patterns of this major group for the first time. Available paleoecological data derived from field studies and published records will be used to determine the effects of various environmental factors such as seafloor conditions, reef development, water depth, and temperature on morphology, extinction survivorship, and diversity. Because decapods have a remarkable range of morphological variation preservable in the fossil record, the diversity of the groups of decapods can be assessed in relation to their morphological characteristics. Defining the history of taxa with specialized morphology will permit recognition of body plans that have been exploited by different decapod groups throughout the history of the clade.

Intellectual merit. This study will provide the most comprehensive analysis of macroevolution of the Decapoda yet conducted, all based upon a unique dataset that is internally consistent by virtue of its having been developed entirely by the investigators. It will document the significance of employing a high resolution, species-level database for interpretation of diversity. The hypotheses and conclusions derived here will provide a model and the foundation for future work on Decapoda, Arthropoda, and macroevolution of well-constrained groups. It will provide a test for the efficacy of PBDB data versus a constrained dataset assessed by specialist systematists.

Broader impacts. The work will introduce undergraduate students at Kent State at Stark, an undergraduate campus, and Kent State at Kent, to research that involves paleoecological, paleogeographical, and functional morphological elements which, in turn, will be communicated to other students. Because decapods are known to virtually everyone, they form an excellent group to use to inform the public about ancient patterns of diversity and the relationship between the morphology of organisms, variations in their environmental requirements, and their adaptability to different physical conditions. This will be conveyed in a professionally constructed display which has the potential to be exhibited in museums and universities around the country. Small kits designed for use in elementary and middle schools will be available to allow students to make their own observations about the adaptations of decapods to their environment and its effect on diversity. Published papers and presentations on results of research at meetings will be prepared throughout the course of the research. Because the study of modern biodiversity is a concern of the general public, presentations to broader audiences as well as geology classes will provide a broad historical context for understanding modern patterns of diversity. Data entered into Paleobiology Database and Ohio Data Resource Commons will be openly available to other researchers and the general public. Combined, the databases will assure archival storage and public access, following a proprietary period.
DATE: -
TEAM MEMBERS: Carrie Schweitzer Rodney Feldmann
resource project Media and Technology
Discovering and understanding the temporal evolution of events hidden in text corpora is a complex yet critical task for knowledge discovery. Although mining event dynamics has been an important research topic leading to many successful algorithms, researchers, research and development managers, intelligence analysts and the general public are still in dire need of effective tools to explore the evolutionary trends and patterns. This exploratory project focuses on developing and validating a novel idea called narrative animation. Narrative animation uses animated visualizations to narrate, explore, and share event dynamics conveyed in temporally evolving text collections. Film art techniques are employed to leverage the animated visualizations in information organization and change detection, with the goals of enhancing analytical power and user engagement. A prototype system called CityStories is being developed to generate narrative animations of events in cities derived from web-based text. If this novel, risky research is successful, it is expected to yield fundamental results in narrative animation that can advance the current paradigm in information visualization and visual analytics by developing novel techniques in using animations for presenting and analyzing dynamic abstract data at a large scale. The pilot system CityStories system is expected provide a novel network platform for education, entertainment, and data analytics. It will engage general users such as students, teachers, journalists, bloggers, and many others in web information visualization and study. Results of this research will be disseminated through publications, the World Wide Web, and collaborations with researchers and analysts. The project web site (http://coitweb.uncc.edu/~jyang13/narrativeanimation/narrativeanimation.htm) will include research outcomes, publications, developed software, videos, and datasets for wide dissemination to public.
DATE: -
TEAM MEMBERS: Ye Zhao
resource project Media and Technology
This planning grant addresses the issue of students losing interest in STEM during the ages of 8-12 years. The PIs propose that STEM content provided through electronic media will be more readily accepted by youth because it is on their "home turf." IMX.org will be a new, highly engaging, online destination for tweens and kids at large. It is designed to leverage the Web 2.0 and tweens' fascination with media and popular culture, and to demonstrate the connections between the real world, everyday life, and STEM. The project will test a preliminary design with a focus group of 8-12 year-olds, convene a panel of experts and Advisory Board, and create a beta Web site to conduct formative research.
DATE: -
TEAM MEMBERS: Jenny Lam
resource project Public Programs
This is a Broad Implementation proposal. Our goal is to create a vibrant, sustained community of practice around the established Café Scientifique New Mexico model for engaging high school teens in science, technology, engineering and math; scale-up will be accomplished via a national network of committed partners. The adult Cafe Scientifique model for engaging citizens in science has proven very effective and has been implemented widely. The interaction in a social setting with a scientist-presenter around a hot science topic is the key to the model’s success. With ISE funding, the model has been adapted by Science Education Solutions for the high school teen audience. Cafe Scientifique New Mexico, now starting its fifth year, has had documented success in providing teens with increased STEM literacy and a more realistic picture of scientists as real people leading interesting lives. Teens come to better understand the nature of science and are more likely to see the relevance of science to their lives. Scientists express strong satisfaction with the nature of our coaching and the resulting quality of their science communication. The program has been continually evaluated and improved, and is now ready for broad implementation. Intellectual Merit: Teenagers are the adult citizens and workforce of tomorrow. Teens are reaching a critical life juncture and are making choices that affect their future life style, life-long learning behaviors, and careers. Yet they are increasingly dropping out of the STEM pipeline in school. Even teens interested in STEM often know little about science and engineering careers and the nature of scientific research. Teen Cafés can play an important role in addressing these challenges. We have two major objectives: 1. Implement the Café Scientifique model of Teen Cafés in a national network of sites committed to adopting and adapting the program and validating its impacts with diverse audiences; and 2. Create a vibrant and sustainable community of practice comprised of ISE and STEM professionals interested in engaging teens in STEM through Teen Cafés. We have formed a core network of six initial partners: Southern Illinois University Edwardsville, Center for STEM Research, Education, and Outreach; The Florida Teen SciCafé Partnership; North Carolina Museum of Natural Sciences, Raleigh; Science Discovery, University of Colorado; The Pacific Science Center in Seattle; and The Missouri AfterSchool Network (MASN) – Project LIFTOF. We will add two more core partners in Year 3. The core partners will join the Teen Cafe Network in a staged fashion in years 1 - 3. Each will reach sustainability over a three-year funding period. Each node has a local area network of partners consisting of organizations that will host local Cafes; scientific organizations with potential presenters; schools and other organizations for recruiting teens; and entities capable of contributing to financial sustainability. The network will provide a structure for a dynamic, growing, and sustainable community of practice to implement the Teen Café model, in which high school teens will gain skills in scientific discourse, thought, and exploration. STEM professionals will gain improved skills for communicating with public audiences and a new perspective on their research from a broader societal perspective. ISE professionals will gain capacity to adapt, implement, test, and further disseminate the Teen Café model and increased capability for preparing STEM experts to communicate effectively with teen audiences, along with tools, resources, and expertise to help them do so. Science Education Solutions will manage the project and provide the resources to support the community of practice, while continuing Cafe Scientifique New Mexico as a ninth network node. We will stimulate intensive ongoing communication of lessons learned across the network as partners start up their Cafe programs; external observers will be able to watch the program unfold. Broader Impacts: We will build capacity for serving teens and effective communication of science in the broad ISE and STEM communities by encouraging and nurturing others wishing to start a Cafe program and join the network. We have partnered with 10 large science and science education organizations, each with its own extensive network, which will allow us to further propagate the Teen Cafe Network. They are: National Ecological Observatory Network (NEON). Nanoscale Informal Science Education Network (NISE Net), The American Institute of Physics (AIP), Science Cafés.org (to include NOVA), Science Festival Alliance, Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), Informalscience.org, Project Liftoff: Elevating Science Afterschool, ITEST Learning Resource Center, and The Center for Multiscale Modeling of Atmospheric Processes (CMMAP). Each partner will also target underserved and diverse teen audiences for their programs.
DATE: -
TEAM MEMBERS: Michelle Hall Michael Mayhew
resource project Public Programs
The project will conduct a mapping study to describe the contexts, characteristics and practices of a national sample of science-focused Out-of-School Time (OST) programs. The study targets OST programs for middle- and high-school-aged youth, including after-school programs, camps, workshops, internships, and other models. While millions of dollars are invested in these programs, and tens of thousands of students participate , as a community, we have no truly comprehensive view of the wide variety of formats, audiences, and approaches that are represented by the many active programs. Where, when, and by whom are these science-rich programs conducted? What types of experiences do they offer to what kinds of students, with what goals? What organizational and experiential factors affect the outcomes for these youth? Ultimately, we wish to understand how these differences in program design are related to youth outcomes such as STEM learning, attitudes and interest, and their later career and educational choices. To answer these questions, we are gathering data through documents, interviews, and the online MOST-Science Questionnaire.
DATE: -
TEAM MEMBERS: University of Colorado Boulder Sandra Laursen Robert Tai Xitao Fan
resource project Public Programs
FUSE is a new kind of interest-driven learning experience being developed by researchers at Northwestern University with the goal of engaging pre-teens and teens in science, technology, engineering, arts/design, and mathematics (STEAM) topics while fostering the development of important 21st century skills including adaptive problem solving, creativity, self-directed learning, persistence, and grit. FUSE is now offered in-school, after-school, and on the weekends at 23 different locations in the greater Chicago area. Through FUSE, teens can "hang out, mess around and geek out" with the FUSE set of challenges, the core activities in our Studios. Each challenge uses a leveling up model from gaming and is carefully designed to engage teens in different STEAM topics and skills sets. FUSE currently has 21 challenges in areas such as robotics, electronics, biotechnology, graphic design, Android app development, 3D printing and more. New challenges are always in development. FUSE Challenges can be tackled individually or in groups. Professional scientists, engineers, advanced undergraduates, and graduate students are available as mentors and provide a real-world connection to the concepts learned and practiced through the challenges. All challenges result in digital media artifacts that are shared online for peer review, remixing, expert judging, and collaboration. We designed the FUSE program to appeal to the interests of all young people, especially those youth who are not interested in or don't think of themselves as "good at" math and science in school. FUSE challenges provide a new way to explore science, technology, engineering, arts and design, and math in a fun and relaxed way. FUSE is based on many years of research in the learning sciences by faculty in School of Education and Social Policy at Northwestern University.
DATE:
TEAM MEMBERS: Northwestern University Maggie Waldron Reed Stevens Kemi Jona
resource project Public Programs
Since August of 2011, Project iLASER (Investigations with Light And Sustainable Energy Resources) has engaged children, youth and adults in public science education and hands-on activities across the entire length of the U.S.-Mexico border, from the Pacific Ocean to the Gulf of Mexico. The two main themes of Project iLASER activities focus on sustainable energy and materials science. More than 1,000 children have been engaged in the hands-on activities developed through Project iLASER at 20+ sites, primarily in after-school settings in Boys & Girls Clubs. Sites include Boys & Girls Clubs in California (Chula Vista, Imperial Beach, El Centro and Brawley); Arizona (Nogales); New Mexico (Las Cruces); and Texas (El Paso, Midland-Odessa, Edinburg and Corpus Christi). The project was co-funded between the NSF Division of Chemistry (CHE) and the Division of Research on Learning in Formal and Informal Settings (DRL).
DATE: -
TEAM MEMBERS: Southwestern College David Brown David Hecht
resource evaluation Professional Development, Conferences, and Networks
As part of the National Science Foundation-funded Access Algebra project, the Oregon Museum of Science and Industry (OMSI) developed both a 6,000 square foot traveling exhibition (Design Zone) and a professional development program for host-museum facilitators who would work in the exhibition. The primary goal of the project was to engage visitors in algebraic thinking, with a special focus on reaching a target audience of 10- to 14-year-olds and their families. Facilitation in Design Zone was intended to support and extend visitors’ engagements with the exhibits and engage visitors in
DATE:
TEAM MEMBERS: Oregon Museum of Science and Industry Cecilia Garibay Jane Schaefer Eric Gyllenhaal
resource evaluation Exhibitions
Design Zone’s primary objective is to engage visitors in algebraic thinking, with a special focus on reaching a target audience of 10- to 14-year-olds and their families. The exhibition is organized into three thematic areas: art, music, and engineering. Exhibits in each area are based on real-world design challenges in which math and algebra are used. Garibay Group was contracted to conduct the summative evaluation of Design Zone. Using a mixed methods approach, data were collected at three museums hosting the Design Zone exhibition.
DATE:
TEAM MEMBERS: Oregon Museum of Science and Industry Cecilia Garibay Jane Schaefer Eric Gyllenhaal
resource research Public Programs
This presentation from the January 2012 Annual Meeting of the Association for Science Teacher Education examines identity formation in middle school science, presenting informal education programs as a way to change perceptions by exposing students to real scientists. The study focuses on middle school students' science identity formations before and after their participation in summer science camps.
DATE:
TEAM MEMBERS: Roxanne Hughes Kristin Molyneaux Pat Dixon
resource research Public Programs
This presentation from the August 2011 Colloquium on P-12 STEM Education Research focuses on two summer camps for middle school students. The study examines how the two programs affect student views and perceptions of scientists and engineers, how a single gender program compares to a co-educational program, and whether there are lessons to be learned for other informal agencies regarding the activities most likely to increase minority students' persistence in science and engineering.
DATE:
TEAM MEMBERS: Roxanne Hughes Kristin Molyneaux Pat Dixon
resource evaluation Public Programs
This portfolio contains the following reports: "Community Science Workshops: A Powerful and Feasible Model for Serving Underserved Youth. An Evaluation Brief"; "Community Science Workshops: Building a Bridge to Science for Urban Youth. A Descriptive Look at CSWs."; "What Do Community Science Workshops Do For Kids? The Benefits to Urban Youth."; and "CSWs by the Numbers: A Statistical Portrait of Community Science Workshops." Community Science Workshops are community-based non-profit programs that offer underserved youth living in low-income, high-minority neighborhoods a fun and safe way to
DATE:
TEAM MEMBERS: Green Mountain College Mark St. John