The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.
*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE:
-
TEAM MEMBERS:
Kristin RuppelClifford MontagneLisa Lone Fight
Finding inclusive approaches to broaden the participation of underrepresented communities in the sciences is the focus of this project. The team will create pathways for Native American students from the development of new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. Each partner brings a successful program, based on good practices from the research literature in improving outcomes for underrepresented students and scientists. Together, the researchers will create scientific collaborations that support a pipeline for Native American students from middle school through to graduate school and beyond. In addition, the project will work on building welcoming workplace climates for indigenous researchers within ?traditional Western? organizations. The approach will integrate indigenous and Western knowledge in research collaborations to create more creative, innovative, and culturally relevant science research programs.
This project, Integrating Indigenous and Western Knowledge to Transform Learning and Discovery in the Geosciences, uses the principles of collective impact to create new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. The project collaborators will more strongly integrate indigenous and Western knowledge into collectively-developed research projects. The project partners the Rising Voices: Collaborative Science for Climate Solutions (Rising Voices) and member tribal colleges and communities with Haskell Indian Nations University, the National Center for Atmospheric Research (NCAR), the University of Arizona?s Biosphere 2, and National Center for Atmospheric Research?s Significant Opportunities in Atmospheric Research and Science (SOARS) internship and Global Learning and Observation to Benefit the Environment (GLOBE) citizen science programs. Together, they will build research partnerships between Native American and traditional Western scientists, provide professional development for NCAR and Biosphere 2 scientists on how to engage appropriately with tribal communities, and provide pathways for NA students from middle school through college, to grad school and beyond. The project will connect community-based citizen science programs for middle- and high school youth with undergraduate programs at Haskell Indian Nations University and University of Arizona, and with summer research internship experiences for undergraduates and graduate students that address topics of interest across tribal communities, tribal college faculty, traditional science institutions, and community-based citizen science. This project also enhances the research capacity of all partners, and brings together diverse perspectives, which have been shown to lead to greater innovation, creativity, and higher impact research. The project has the potential to provide a tried and tested model for building similar partnerships at other institutions, including content and methods for professional development for mainstream scientists, ways to create more welcoming spaces for Native American students and scientists, promising practices for improving how research in the geosciences carried out, and an increase in the representation of Native American students and scientists in that vital research enterprise.
The Colleges of Science & Engineering and Graduate Education, and the Metro Academies College Success Program (Metro) at San Francisco State University in partnership with San Francisco Unified School District and the San Francisco Chamber of Commerce develop an integrated approach for computing education that overcomes obstacles hampering broader participation in the U.S. science, technology, engineering and mathematics (STEM) workforce. The partnership fosters a more diverse and computing-proficient STEM workforce by establishing an inclusive education approach in computer science (CS), information technology, and computer engineering that keeps students at all levels engaged and successful in computing and graduates them STEM career-ready.
Utilizing the collective impact framework maximizes the efficacy of existing regional organizations to broaden participation of groups under-educated in computing. The collective impact model establishes a rich context for organizational engagement in inclusive teaching and learning of CS. The combination of the collective impact model of social agency and direct engagements with communities yields unique insights into the views and experiences of the target population of students and serves as a platform for national scalable networks.
DATE:
-
TEAM MEMBERS:
Keith BowmanIlmi YoonLarry HorvathEric HsuJames Ryan
Public libraries are becoming an important place for informal science, technology, engineering and mathematics (STEM) education for K-12 students and their families, as well as for adult education activities that support STEM workforce development. This report provides public librarians, administrators and collaborating organizations a brief background on the role that libraries can play in fostering a healthy STEM education ecosystem, as well as promising practices for implementing effective STEM programs in public libraries.
DATE:
TEAM MEMBERS:
Annette ShtivelbandLauren RiendeauAmanda Wallander-RobertsRobert Jakubowski
Science, technology, engineering, and mathematics (STEM) education and programming has become a priority in our nation. In the United States, the STEM pipeline is considered "leaky" as many students disengage from STEM at various points during their lives. In particular, women, Latinos, and African Americans are more likely to disengage from the STEM pipeline. American students are less likely to earn STEM postsecondary and graduate degrees compared to other nations. As careers in STEM fields are expected to increase at a faster rate than other occupations, there is growing concern about the
DATE:
TEAM MEMBERS:
Annette ShtivelbandAmanda Wallander RobertsRobert Jakubowski
The Morgan State University INCLUDES project will build on an existing regional partnership of four Historically Black Colleges and Universities that are working together to improve STEM outcomes for middle school minority male students that are local to Morgan State in Baltimore, North Carolina A&T in Greensboro, Jackson State in Mississippi, and Kentucky State in Frankfort. Additional partners include SRI International, the National CARES Mentoring Network, and the Verizon Foundation. Using the collective impact-style approaches such as planning and implementing a Network Improvement Community (NIC), developing a shared agenda and implementing mutually reinforcing activities, these partners will address two common goals: (1) Broaden the participation of underrepresented minority males in science and engineering through educational experiences that prepare them for careers in STEM fields; and (2) Create a Network Improvement Community focused on STEM achievement in minority males. Program elements include high-quality instruction in STEM content, mentoring, and professional development. The project will expand to include eight additional partners (six HBCUs and two Hispanic-Serving Institutions) and schools and districts in communities local to their campuses. The INCLUDES pilot will help scale innovations that target impacting minorities in STEM.
The project will develop STEM learning pathways for middle school minority males by harnessing the collective impact of 12 university partners, local K-12 schools and districts with which they partner, and surrounding community organizations and businesses with a vested interest in achieving common goals. Products will include a roadmap for addressing the problem through a Network Improvement Community, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and common metrics, assessments, and shared measurement systems that will be used to measure the collective impact of the Network Improvement Community.
DATE:
-
TEAM MEMBERS:
Jumoke Ladeji-OsiasCindy ZikerGeneva HaertelKamal AliAyanna GillDerrick GilmoreClay Gloster
This study was a longitudinal summative evaluation of repeat visitors’ experiences in four Math Moves! exhibitions that were developed as part of a large collaborative exhibition development project called Math Core for Museums, and mounted at four museums around the country: Museum of Science (Boston); Museum of Life & Science (Durham, NC); Explora (Albuquerque); and Science Museum of Minnesota (St. Paul). The summative evaluation purposively selected four family groups at each institution and collected naturalistic data as the 16 groups engaged with the exhibits from 4-6 times over a two
The mixed methods randomized experimental study assessed a model of engagement and education that examined the contribution of SciGirls multimedia to fifth grade girls’ experience of citizen science. The treatment group (n = 49) experienced 2 hours of SciGirls videos and games at home followed by a 2.5 hour FrogWatch USA citizen science session. The control group (n = 49) experienced the citizen science session without prior exposure to SciGirls. Data from post surveys and interviews revealed that treatment girls, compared to control girls, demonstrated significantly greater interest in their
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This conference proposal represents the first phase of a larger three-phase participatory research project that will use communities of interest as a vehicle for solving problems of common concern about designing youth-based STEM programs. It will set the stage for research over the next 10-25 years about the long-term impact of a variety of youth programs on STEM learning and career aspirations. Through a virtual format, the Association of Science-Technology Centers will bring together two representatives from ten long-standing youth programs, experts in the field of out-of-school time youth programming, and researchers to collaboratively develop a program profile template for measuring the impact of youth programming. The program profile template will help identify specific characteristics that will capture the influence of youth programs on their participation in out-of-school STEM activities.
The program profile template will be the main outcome from the conference. It will serve as the foundation for designing long-term impact studies that support the needs of program staff interested in improving youth programming in informal environments. It will also allow program staff and researchers to document and share intellectual capital, compare goals and features across programs, and support network efforts among informal agencies worldwide. The program profile template will be shared online through informalscience.org, the Association of Science-Technology Centers' communities of practice networks, and through other out-of-school-time national organizations.
Mathematics is a notoriously disliked subject; there is so little stigma associated with being "bad at math", that educated adults openly describe themselves in this way. There are many reasons for math's unpopularity; chief among them is that school mathematics seldom offers opportunities to engage with the richness of this potentially fascinating subject. As a result, the mathematics education pipeline in the United States is more often a filter than a pump, siphoning students out rather than bringing them along. Children have libraries to help them fall in love with literature: where do they get a chance to fall in love with math? This project presents a unique opportunity to study children engaged with mathematics in an informal setting, the Minnesota State Fair, facilitated by mathematically knowledgeable volunteers. The Math On-a-Stick mathematical playground provides a place for children to engage with mathematics by exploring patters, asking quantitative questions, and investigating shape and space to mathematize their play. The project will observe and videotape this engagement to inform the design of mathematical learning environments in a variety of outside of school time settings, such as after school programs and summer camps, that are accessible to a wider range of the population. This project is co-funded by the EHR Core Research (ECR) and Advancing Informal STEM Learning (AISL) programs. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in three thematic areas: STEM learning and learning environments, broadening participation, and STEM workforce development. The AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
The project will investigate three research questions: (1) How does the design of various parts of the exhibit differently support rich mathematical interactions between children and mathematicians? (2) How do children engage different parts of the exhibit? How do differences in engagement relate to (a) exhibit design and (b) prior mathematical experience? (3) How do exhibit volunteers, mathematicians, and caregivers interact to support (or undermine) students' mathematical play? The project will use participant observation and videography to capture visitors' activities through the exhibit, analyzing them as qualitative case studies.
This project was submitted in response to EHR Core Research (ECR) program announcement NSF 15-509. The ECR program of fundamental research in STEM education provides funding in critical research areas that are essential, broad and enduring. EHR seeks proposals that will help synthesize, build and/or expand research foundations in the following focal areas: STEM learning, STEM learning environments, STEM workforce development, and broadening participation in STEM. The ECR program is distinguished by its emphasis on the accumulation of robust evidence to inform efforts to (a) understand, (b) build theory to explain, and (c) suggest interventions (and innovations) to address persistent challenges in STEM interest, education, learning, and participation.
In 2015, average mathematics scores on the National Assessment of Educational Progress (NAEP) declined in fourth and eighth grades, the first declines in mathematics at these grade levels since 1990. Declines in U.S. mathematics performance has important implications for overall STEM education as well as STEM workforce and international competitiveness. Researchers at Rutgers University will conduct an analysis to isolate the cause of the mathematics decline by investigating the dimensionality of the NAEP assessment, state-level outcomes, and demographic trends.
The team will use multilevel item response theory modeling techniques to investigate the declines by examining the factor structures to determine dimensionality across years. Researchers will examine subscores corresponding to each dimension of the factor structure at the state and national levels. In addition, subscores will be examined for trends in individual states and jurisdictions. Potentially, the analyses will allow for examination of factors related to state standards adoptions, demographic shifts, and participation rates.
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.