Water is an essential, basic need. It is the sustenance for living organisms. For many Native American communities, like the Ojibwe tribes of Minnesota, water is a sacred valuable life source that permeates all aspects of their culture. In these communities, water stories are often used to communicate the value and impact of water on their lives and the lives of others. These stories signal geohydrologic, sociocultural, and sociopolitical societal shifts over time. This pilot study will explore the feasibility of using Native water stories and informal learning experiences to bring water science and issues of water sustainability to youth and public audiences. A significant outcome of the pilot will be a youth-museum-educator co-created public planetarium show and program based on the water stories collected and archived. This approach is particularly novel. It provides an entry into STEM through a dynamic, multimedia context that typically does not engage youth as co-creators of the experiences. Water Values will give voice and a public platform to youth and their communities to elevate ecological issues that are relevant and timely within their own communities. It will also promote scientific discourse through field experiences, interactions with scientists and STEM professions, and community leadership development. Further, this pilot will also test a reciprocal relationship model among its partners. Analogous feasibility research to the Water Values pilot does not exist in the current NSF portfolio. Therefore, the project will not only contribute to the emerging literature base on the intersectionality of STEM, storytelling and Native cultures, but it will also contribute to broader discourse about water health, access, management, and sustainability.
The pilot study will bring together the long standing gidakiimanaaniwigamig program, with its master teachers who are experts in culturally responsive education for Native American youth, and the Bell Museum, which has decades of experience in developing informal STEM learning programs for a broad community. Thirty-five middle school aged youth, five educators, and over 200 community members will engage in the work. During the summer residential program, youth will be exposed to STEM content and important water science concepts through field-based research and a culturally relevant, placed-based curriculum focused on water and communicating water stories. These experiences will be extended during the academic year through weekend science activities that will focus on the compilation of water stories from Native communities, especially from the Ojibwe tribes of Minnesota, and creatively integrating the stories into a fully operational youth-museum co-created public planetarium program. This capstone planetarium show and program will be piloted at the Bell Museum. With regards to the research, four overarching question will guide the study: (1) How does participation in creating water journey stories increase Native students' motivation to learn and engage with STEM, (2) How does participation in creating and presenting water journey stories build change in sociopolitical awareness among Native students? (3) How do Native community members engage with water stories for sociopolitical change and greater participation in STEM? and (4) How does collaboration between gidakiimanaaniwigamig, the Bell, and the UMN impact STEM interest and participation in students and a Native community for transformative experience? Data will be collected from the youth participants, instructors and leaders, and community members. These data will be collected from content surveys, student logs, self-reported intrinsic motivation instrument, observations, and artifacts. The results will be disseminated through various mechanisms within and beyond the target communities. Formative and summative evaluations will inform that work and will be led by an external evaluation firm, Erikkson Associates.
This feasibility study is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Bhaskar UpadhyayDiana DalbottenJonee Brigham
Supported by the National Science Foundation, the Global Soundscapes! Big Data, Big Screens, Open Ears project employs a variety of informal learning experiences to present the physics of sound and the new science of soundscape ecology. The interdisciplinary science of soundscape ecology analyzes sounds over time in different ecosystems around the world. The major components of the Global Soundscapes project are an educator-led interactive giant-screen theater show, group activities, and websites. All components are designed with both sighted and visually impaired students in mind. Multimedia
Researchers at the American Association of Variable Star Observers, the Living Laboratory at the Boston Museum of Science, and the Adler Planetarium are studying stereoscopic (three-dimensional or 3D) visualizations so that this emerging viewing technology has an empirical basis upon which educators can build more effective informal learning experiences that promote learning and interest in science by the public. The project's research questions are: How do viewers perceive 3D visualizations compared to 2D visualizations? What do viewers learn about highly spatial scientific concepts embedded in 3D compared to 2D visualizations? How are viewers\' perceptions and learning associated with individual characteristics such as age, gender, and spatial cognition ability? Project personnel are conducting randomized, experimental mixed-methods research studies on 400 children and 1,000 adults in museum settings to compare their cognitive processing and learning after viewing two-dimensional and three-dimensional static and dynamic images of astronomical objects such as colliding galaxies. An independent evaluator is (1) collecting data on museum workers' and visitors' perceived value of 3D viewing technology within museums and planetariums and (2) establishing a preliminary collection of best practices for using 3D viewing technology based on input from museum staff and visitors, and technology creators. Spatial thinking is important for learning many domains of science. The findings produced by the Two Eyes, 3D project will researchers' understanding about the advantages and disadvantages of using stereoscopic technology to promote learning of highly spatial science concepts. The findings will help educators teach science in stereoscopic ways that mitigate problems associated with using traditional 2D materials for teaching spatial concepts and processes in a variety of educational settings and science content areas, including astronomy.
This report summarizes findings from an evaluation of the NSF-funded project: Two Eyes, 3D. Through collaborations with two museums, the project sought to develop and test learning outcomes for stereoscopic (3D) resources. More specifically, the external evaluation—conducted by Rockman Et Al—sought to determine the perceived value of using stereoscopic technology within museums and planetariums, uncover best practices for implementation of stereoscopic resources, and further explore best practices for research partnerships within museum settings.
DATE:
TEAM MEMBERS:
American Association of Variable Star ObservrsJennifer Borland
The Global Soundscapes! Big Data, Big Screens, Open Ears Project uses the new science of soundscape ecology to design a variety of informal science learning experiences that engage participants through acoustic discovery Soundscape ecology is an interdisciplinary science that studies how humans relate to place through sound and how humans influence the environment through the alteration of natural sound composition. The project includes: (1) an interface to the NSF-funded Global Sustainable Soundscapes Network, which includes 12 universities around the world; (2) sound-based learning experiences targeting middle-school students (grades 5-8), visually impaired and urban students, and the general public; and (3) professional development for informal science educators. Project educational components include: the first interactive, sound-based digital theater experience; hands-on Your Ecosystem Listening Labs (YELLS), a 1-2 day program for school classes and out-of school groups; a soundscape database that will assist researchers in developing a soundscape Big Database; and iListen, a virtual online portal for learning and discovery about soundscape. The project team includes Purdue-based researchers involved in soundscape and other ecological research; Foxfire Interactive, an award-winning educational media company; science museum partners with digital theaters; the National Audubon Society and its national network of field stations; the Perkins School for the Blind; and Multimedia Research (as the external evaluator).
This research and development project would inform and engage audiences (especially middle school age girls) about the fundamental research under investigation at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. A research plan and summative evaluation will fill a gap in what is known about the public's perception and understanding of the LHC/particle physics and include studies on girl's interest and engagement. Deliverables include a 40 minute giant screen film (3D/2D), full dome planetarium film, an interactive theater lobby exhibit, website, mobile app, materials and professional development workshops for educators. The giant screen film will use scientific visualizations and artistic interpretation to reveal compelling scientific stories recreating conditions following the Big Bang and the discovery in 2012 of the Higgs boson. CERN is providing unprecedented access to the collider and particle detectors including filming inside the 17 mile long underground tunnel while it is closed for upgrades in 2013-2014. There are 8 partner science museums (7 with planetariums) that will show the film/exhibit and serve as sites for research, evaluation, and outreach to underserved audiences ( Adventure Science Center, Carnegie Science Center, The Franklin Institute, Liberty Science Center, OMSI, Orlando Science Center, the Smithsonian, and the St. Louis Science Center). Additional distribution/marketing channels include giant screen theaters, planetariums, DVD, and social social media. Launch is targeted for 2016. Learning outcomes will focus on increasing awareness and interest in the LHC and increasing young people's engagement and excitement about the nature of scientific discovery. The research on girl's engagement and interest in physics will fill a gap in field. The project deliverables are projected to reach large audiences through national distribution of the giant screen film, the planetarium show, the exhibit, 3D/2D Blu Ray and DVDs, and access on computers, tablets, and other mobile devices.
Ice Planet Earth (IPE) was a three-year NSF-Funded grant, with a focus on building awareness and understanding of polar processes and designed to coincide with the International Polar Year, which took place from March 2007-March 2009. A key feature of the IPE project was the development of 'Ice Worlds', a planetarium style film designed for both general audiences and for students/youth. IPE was a collaboration between the University of New Hampshire, and the following institutions: The Carnegie Museum of Natural History in Pittsburgh; the Houston Museum of Natural Sciences; the Louisiana Art
User Experience Research Consulting (UXR) conducted a summative evaluation of the NSF-ISE funded project, STEPS (Science Theater Education Programming System). The STEPS project brought together a network of informal science educators and contractors to create an interactive museum theater authoring and presentation system to increase educational capacity for small and large museums across the country. The software package includes an authoring tool for the creation of multimedia science theater productions; a presentation player for displaying the shows to audiences in museum theaters
DATE:
TEAM MEMBERS:
Jes A. KoepflerUniversity of Colorado, Denver
This project will develop an interactive application for spherical displays developed by NOAA called Science on a Sphere. The spheres are animated globes that can show dynamic, animated images of the atmosphere, oceans, and land of a planet. NOAA primarily uses SOS as an education and outreach tool to describe the environmental processes of Earth. Science On a Sphere was initially developed as a way to explore environmental data using new visualization techniques. There are about 70 installations of the sphere in science centers, planetariums and museums world-wide with 40 in the US. Currently the spheres only display static content. This project will extend the amount of content available and provide interactivity. The resulting application will be available to both installed spheres and those institutions thinking about purchasing and installing the sphere display. Math on a Sphere will enable users to create 3-D interactive graphic content for spheres. The project will enable users to interact with the displays they develop for the spheres either on-site or remotely. Through the use of a computer-based toolkit, users can create their own programs, build geometric patterns, and send a variety of graphical content to the spherical display. The project hypothesizes that user-directed development combined with a visually compelling spherical display will spark interest in STEM topics and specifically, in the test version, mathematical content. This project will prototype, design, implement, test, and evaluate software that allows users to display their computational work on an installed sphere as well as work remotely on the project and to test their mathematical computations by viewing the spherical display remotely either through a computer monitor or a camera view of the sphere itself. While the prototype will be developed focusing on mathematical concepts, there are clear links between the toolkit being developed to physics, meteorology, oceanography and astronomy. The project will increase the computational and spatial reasoning and thinking of the target audience of middle school and high school students. The application will be available remotely for individual users but could easily be used in classroom settings. The application can be used by teachers and museum and science center staff as well to encourage its use among users both on site and remotely. The successful demonstration of interactive 3-D display of science concepts using the Science on a Sphere installations can lead to interactive use of other large public display installations such as walls or large screen projection. This capability would extend the ability of users to derive greater use of these visually driven devices for learning STEM concepts and content.
Carnegie Mellon University is developing an interactive, multimedia planetarium presentation about the human brain. The interdisciplinary project team will build upon and refine the experience gained from its recently completed planetarium show, Journey Into the Living Cell. The context for this work is the need for increased public understanding of the human brain - an organ central to the very concept of humanity. The understanding of the human brain is located at the lively crossroads of research in many disciplines, including psychiatry, psychology, neuroscience, computer science and biology. The proposed medium to address this important issue is a 45-minute planetarium show. A broad audience ranging from pre-adolescent to adult will be targeted. Sophisticated and entertaining imaging technologies, including animation and virtual reality, will be used throughout the work. Narration and sound will be tightly integrated into the work. The hemispherical display surface of the planetarium will be fully utilized both visually and sonically. Recent advances in the brain sciences as well as long held understandings about the brain will be presented. Basic brain biology and principles of brain function including cooperativity in brain region activity and brain region specialization will be introduced.
DATE:
-
TEAM MEMBERS:
James McClellandPaul OlesBryan Rogers
The Lawrence Hall of Science proposes to develop a major public education program, including a traveling exhibition, two planetarium programs, a play, and a kit for schools entitled "Columbus' Great Experiment." Emphasizing science and technology, Columbus' first voyage is portrayed as an experiment aimed at testing the hypothesis (based on doubtful evidence) that sailing to the west was a more practical way of reaching the Indies than by sailing east around the Horn of Africa. As with many scientific experiments, the results were quite different from what the experimenter had in mind: instead of finding a sea route to the Indies, Columbus vastly expanded knowledge about our planet and spurred developments in science and technology. These events occurred within a social and cultural context that were critical to the development of modern science, and resulted in far-reaching changes in the population and ecology of the world which continue today. The National Endowment for the Humanities has recently awarded a grant for the development of the exhibits. The present proposal requests that NSF join with NEH to complete and expand the project, by funding: a) components of three additional copies of the exhibition to be constructed by other museums, thus expanding the public audience to 19 million visitors; b) two participatory planetarium programs; c) a play about the scientific aspects of Columbus' voyage; and d) school kits that will enable teachers to present the most important ideas embodied in the exhibition to students who are unable to view the exhibition at a science center. Interest in these programs will peak around Columbus Day, 1992, we anticipate that the materials will be sufficiently interesting, informative, and entertaining to be used for many years to come.