Skip to main content

Community Repository Search Results

resource project Public Programs
The Clubhouse Network: A Global Community for Creativity and Achievement, a program of Boston's Museum of Science, will develop, pilot, and evaluate Light it Up! Engaging Young People in Digital Making Activities. Digital making activities combine design, computational thinking, and engineering practices that are all fundamental learning skills for the 21st century. Over the course of six months, the project team will develop a one-day, hands-on workshop that will give museum educators strategies to inspire a more diverse population of middle and high school-aged youth to consider educational and career pathways in STEM fields through engagement with local science centers. The workshop will be implemented twice with a group of 12 educators from regional museums. The museum will use tested evaluation tools to improve the quality and outcomes of the workshops. A successful prototype and evaluation will result in practices that can be adapted by other museums and cultural institutions to better reach young people with digital making activities.
DATE: -
TEAM MEMBERS: Gail Breslow
resource research Public Programs
We report on an ongoing collaboration that uses puppetry as a shared cultural expression in educational workshop that inform intercultural exchange. Collaborators in Atlanta, USA and Medellín, Colombia work in tandem on the design and implementation of puppet-building workshops. These workshops use narrative framing, craft-based prototyping, and performance-based validation to teach students basic prototyping skills. They specifically encourage them to relate to their local culture and to inform an ongoing dialogue between the two cultural spheres.
DATE:
TEAM MEMBERS: Isabel Restrepo Michael Nitsche Crystal Eng
resource research Public Programs
Based on preliminary findings from two puppet making and prototyping workshops, an emergent importance of ownership is identified among participants. The workshops center around puppet construction and performance but differed in population and design. We identify key mechanisms of the observed feeling of owernership in the different populations and lay out directed design choices to further support such ownership effects.
DATE:
TEAM MEMBERS: Michael Nitsche Crystal Eng Firaz Peer
resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource project Media and Technology
Reconceptualizing STEM + Computing Literacy is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance multidisciplinary integration of computing and computational thinking in K-12 science, technology, engineering, and mathematics (STEM) teaching and learning through applied research and development across one or more domains, and broadening participation in computing and computing-related fields. The project will study the integration of computational thinking as part of a new and more contemporary perspective of STEM literacy, and will design, develop, and beta-test a prototype literacy assessment tool that will measure computational thinking literacy along with measures of literacy in other STEM content areas. The tool will be available to the general public as a self-measurement application (App) that can be used by individuals to test their own literacy, and by teachers, schools, and informal educators and organizations to assess literacy development in their students and in their STEM education programs. This transdisciplinary research project will begin the process of creating an innovative approach and tool for measuring literacy that will expand the definition of literacy to include computational skills along with science reasoning. Literacy is an important concept and measurement that has traditionally been used to assess an individual's knowledge of science. This project will explore a broader literacy perspective that incorporates learning derived from out of school and one that incorporates computational skills and thinking as part of a more contemporary perspective of STEM literacy. A prototype web-based App allowing individuals and education organizations to assess literacy levels, and ways to enhance literacy, will be developed and studied. The methodology will be developed using discussions and knowledge from over 60 experts across computing, education, science, social science, and other STEM fields using a Delphi method to engage in reconceptualization of literacy. The hypothesis is that this new STEM+C literacy framework should be structured along four interacting but semi-independent domains: 1) general STEM+C knowledge; 2) self-defined areas of STEM+C knowledge and expertise; 3) attitudes and beliefs related to STEM+C; and 4) the skills and competencies necessary to participate in STEM+C related pursuits and discussions, including measures of modes of STEM+C thinking. Each of these four domains is likely to include numerous sub-domains and associated descriptors, which collectively describe the different aspects of being a STEM+C literate citizen. The application will be designed to provide feedback to individuals on their knowledge, attitudes and skills compared with those of others and suggest ways to enhance and improve their skills and understanding through an embedded feedback mechanism. This project creates public benefit by providing individuals and organizations with a responsive real-time understanding measuring STEM+C literacy, deepening the dialogue about the value of public engagement in science, engineering, technology, math and computing and revealing the dynamic factors that inform STEM+C literacy.
DATE: -
resource research Media and Technology
In this literature review, we seek to understand in what ways aspects of computer science education and making and makerspaces may support the ambitious vision for science education put forth in A Framework for K-12 Science as carried forward in the Next Generation Science Standards. Specifically, we examine how computer science and making and makerspace approaches may inform a project-based learning approach for supporting three-dimensional science learning at the elementary level. We reviewed the methods and findings of both recently published articles by influential scholars in computer
DATE:
TEAM MEMBERS: Samuel Severance Susan Codere Emily Miller Deborah Peek-Brown Joseph Krajcik
resource research Media and Technology
As the maker movement is increasingly adopted into K-12 schools, students are developing new competences in exploration and fabrication technologies. This study assesses learning with these technologies in K-12 makerspaces and FabLabs. Our study describes the iterative process of developing an assessment instrument for this new technological literacy, the Exploration and Fabrication Technologies Instrument, and presents findings from implementations at five schools in three countries. Our index is generalizable and psychometrically sound, and permits comparison between student confidence
DATE:
TEAM MEMBERS: Paulo Blikstein Zaza Kabayadondo Andrew P. Martin Deborah A. Fields
resource project K-12 Programs
This project, an NSF INCLUDES Design and Development Launch Pilot, managed by the University of Nevada, Reno, addresses the grand challenge of increasing underrepresentation regionally in the advanced manufacturing sector. Using the state's Learn and Earn Program Advanced Career Pathway (LEAP) as the foundation, science, technology, engineering and mathematics (STEM) activities will support and prepare Hispanic students for the region's workforce in advanced manufacturing which includes partnerships with Truckee Meadows Community College (TMCC), the state's Governor's Office of Economic Development, Charles River Laboratories, Nevada Established Program to Stimulate Competitive Research (Nevada EPSCoR) and the K-12 community.

The expected outcomes from the project will inform the feasibility, expandability and transferability of the LEAP framework in diversifying the state's workforce locally and the STEM workforce nationally. Formative and summative evaluation will be conducted with a well-matched comparison group. Dissemination of project results will be disseminated through the Association for Public Land-Grant Universities (APLU), STEM conferences and scholarly journals.
DATE: -
TEAM MEMBERS: David Shintani Julie Ellsworth Karsten Heise Robert Stachlewitz Regina Tempel
resource project Making and Tinkering Programs
This NSF INCLUDES Design and Development Launch Pilot (named ALCSE-INCLUDES) project will develop and implement an innovative computer science (CS) education model that will provide all 8th grade students in 3 districts in Alabama's 'Black Belt' with exciting and structured hands-on activities intended to make CS learning enjoyable. The course will use an educational style called "learning CS by making" where students will create a CS-based product (such as a robot) and understand the concepts that make the product work. This hands-on approach has the potential to motivate diverse student populations to pursue higher level CS courses and related disciplines during and after high school, and to join the CS workforce, which is currently in need of more qualified workers.

ALCSE-INCLUDES Launch Pilot will unite the efforts of higher education institutions, K-12 officials, Computer Science (CS)-related industry, and community organizations to pursue a common agenda: To develop, implement, study, and evaluate a scalable and sustainable prototype for CS education at the middle school level in the Alabama Black Belt (ABB) region. The ABB is a region with a large African-American, low-income population; thus, the program will target individuals who have traditionally had little access to CS education. The prototype for CS education will be piloted with 8th grade students in 3 ABB schools, using a set of coordinated and mutually reinforcing activities that will draw from the strengths of all members of the ALCSE Alliance. The future scaled-up version of the program will implement the prototype in the 73 middle schools that comprise ALL 19 school districts of the ABB. The program's main innovation is to provide CS education using a makerspace, a dedicated area equipped with grade-appropriate CS resources, in which students receive mentored and structured hands-on activities. The goal is to engage ALL students, in learning CS through making, an evidence-based pedagogical approach expected to reinforce skills and promote deep interest in CS.
DATE: -
TEAM MEMBERS: Shaik Jeelani Bruce Crawford Mohammed Qazi Jeffrey Gray Jacqueline Brooks
resource project Professional Development, Conferences, and Networks
Aligning for Impact: Computer Science Pathways Across Contexts [CS-PAC] is an NSF INCLUDES Design and Development Launch Pilot. It broadens participation of students who are underrepresented in computer science by using the convening and policy-making power of the Georgia State Department of Education to coalesce school district leaders to implement K-12 computer science education. The project provides a national model for how to work toward systemic change. With the State Department of Education's coordination, several school districts will collaboratively seek improvements in their own student participation rates. The coordination of data reporting and analysis, resources, communications, and policy promote more equitable participation in computer science education. Research emerging from this project informs other states about how to collaboratively shape computer science education policy and policy implementation.

Using a Collective Impact approach to systemic change, the project creates sustainable institutional change at the community, state, and national levels. Qualitative and quantitative data provide descriptions about how to utilize alignment strategies within Collective Impact in three different contexts: rural, suburban, and urban. Outcomes utilize a regression discontinuity analysis to justify successful implementation as well as qualitative analysis of implementation efforts that were deemed most effective by all stakeholders. The project outputs directly affect over 88,000 students across five districts and indirectly affect over 1.7 million in Georgia alone. The culminating project goal is the development of a coherent framework for aligning K-12 computer science education pathways.
DATE: -
TEAM MEMBERS: Caitlin Dooley Bryan Cox Shawn Utley
resource project Media and Technology
Women continue to be underrepresented in computer science professions. In 2015, while 57% of professional occupations in the U.S. were held by women, only 25% of computing occupations were held by women. Furthermore, the share of computer science degrees going to women is smaller than any STEM field, even though technology careers are the most promising in terms of salaries and future growth. Research suggests that issues contributing to this lack of computer science participation begin early and involve complex social and environmental factors, including girls' perception that they do not belong in computer science classes or careers. Computer science instruction often alienates girls with irrelevant curriculum; non-collaborative pedagogies; a lack of opportunities to take risks or make mistakes; and a heavy reliance on lecture instead of hands-on, project-based learning. Computer science experiences that employ research-based gender equitable best practices, particularly role modeling, can help diminish the gender gap in participation. In response to this challenge, Twin Cities PBS (TPT), the National Girls Collaborative (NGC) and Code.org will lead Code: SciGirls! Media for Engaging Girls in Computing Pathways, a three-year project designed to engage 8-13 year-old girls in coding through transmedia programming which inspires and prepares them for future computer science studies and career paths. The project includes five new PBS SciGirls episodes featuring girls and female coding professionals using coding to solve real problems; a new interactive PBSKids.org game that allows children to develop coding skills; nationwide outreach programming, including professional development for informal educators and female coding professionals to facilitate activities for girls and families in diverse STEM learning environments; a research study that will advance understanding of how the transmedia components build girls' motivation to pursue additional coding experiences; and a third-party summative evaluation.

Code: SciGirls! will foster greater awareness of and engagement in computer science studies and career paths for girls. The PBS SciGirls episodes will feature girls and female computer science professionals using coding to solve real-world challenges. The project's transmedia component will leverage the television content into the online space in which much of 21st century learning takes place. The new interactive PBSKids.org game will use a narrative framework to help children develop coding skills. Drawing on narrative transportation theory and character identification theory, TPT will commission two exploratory knowledge-building studies to investigate: To what extent and how do the narrative formats of the Code: SciGirls! online media affect girls' interest, beliefs, and behavioral intent towards coding and code-related careers? The studies aim to advance understanding of how media builds girls' motivation to pursue computer science experiences, a skill set critical to building tomorrow's workforce. The project team will also raise educators' awareness about the importance of gender equitable computer science instruction, and empower them with best practices to welcome, prepare and retain girls in coding. The Code: SciGirls! Activity Guide will provide educators with a relevant resource for engaging aspiring computer scientists. The new media and guide will also reside on PBSLearningMedia.org, reaching 1.2 million teachers, and will be shared with thousands of educators across the SciGirls CONNECT and National Girls Collaborative networks. The new episodes are anticipated to reach 92% of U.S. TV households via PBS, and the game at PBSKids.org will introduce millions of children to coding. The summative evaluation will examine the reach and impact of the episodes, game and new activities. PIs will share research findings and project resources at national conferences and will submit to relevant publications. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Rita Karl Karen Peterson Rebecca Osborne Barbara Flagg
resource project Public Programs
To reach its full potential in science, technology, engineering, and mathematics (STEM), the United States must continue to recruit, prepare and maintain a diverse STEM workforce. Much work has been done in this regard. Yet, underrepresentation in STEM fields persists and is especially pronounced for Hispanic STEM professionals. The Hispanic community is the youngest and fastest growing racial/ethnic group in the United States but comprises only seven percent of the STEM workforce. More evidence-based solutions and innovative approaches are required. This project endeavors to address the challenges of underrepresentation in STEM, especially among individuals of Hispanic descent, through an innovative approach. The University of San Diego will design, develop, implement, and test a multilayered STEM learning approach specific to STEM learning and workforce development in STEM fields targeting Hispanic youth. The STEM World of Work project will explore youth STEM identity through three mechanisms: (1) an assessment of their individual interests, strengths, and values, (2) exposure to an array of viable STEM careers, and (3) engagement in rigorous hands-on STEM activities. The project centers on a youth summer STEM enrichment program and a series of follow-up booster sessions delivered during the academic year in informal contexts to promote family engagement. Paramount to this work is the core focus on San Diego's Five Priority Workforce Sectors: Advanced Manufacturing, Information and Communications Technology, Clean Energy, Healthcare, and Biotech. Few, if any, existing projects in the Advancing Informal STEM learning portfolio have explored the potential connections between these five priority workforce sectors, informal STEM learning, and identity among predominately Hispanic youth and families engaged in a year-long, culturally responsive STEM learning and workforce focused program. If successful, the model could provide a template for the facilitation of similar efforts in the future.

The STEM World of Work project will use a mixed-methods, exploratory research design to better understand the variables influencing STEM learning and academic and career choices within the proposed context. The research questions will explore: (1) the impacts of the project on students' engagement, STEM identity, STEM motivation, and academic outcomes, (2) factors that moderate these outcomes, and (3) the impact the model has on influencing youths' personal goals and career choices. Data will be garnered through cross-sectional and longitudinal surveys and reflective focus groups with the students and their parents/guardians. Multivariate analysis of variance, longitudinal modeling, and qualitative analysis will be conducted to analyze and report the data. The findings will be disseminated using a variety of methods and platforms. The broader impacts of the findings and work are expected to extend well beyond the project team, graduate student mentors, project partners, and the estimated 120 middle school students and their families from the predominately Hispanic Chula Vista Community of San Diego who will be directly impacted by the project.

This exploratory pathways project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Perla Myers Vitaliy Popov Odesma Dalrymple Yaoran Li Joi Spencer