Skip to main content

Community Repository Search Results

resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.

The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE: -
TEAM MEMBERS: Shuchi Grover Marie Bienkowski John Stamper
resource project Media and Technology
C-RISE will create a replicable, customizable model for supporting citizen engagement with scientific data and reasoning to increase community resiliency under conditions of sea level rise and storm surge. Working with NOAA partners, we will design, pilot, and deliver interactive digital learning experiences that use the best available NOAA data and tools to engage participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and predicted changes for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through real-world planning challenges developed with our city and government partners in Portland and South Portland, Maine. Over the course of the project, thousands of citizens from nearby neighborhoods and middle school students from across Maine’s sixteen counties, will engage with scientific data and forecasts specific to Portland Harbor—Maine’s largest seaport and the second largest oil port on the east coast. Interactive learning experiences for both audiences will be delivered through GMRI’s Cohen Center for Interactive Learning—a state-of-the-art exhibit space—in the context of facilitated conversations designed to emphasize how scientific reasoning is an essential tool for addressing real and pressing community and environmental issues. The learning experiences will also be available through a public web portal, giving all area residents access to the data and forecasts. The C-RISE web portal will be available to other coastal communities with guidance for loading locally relevant NOAA data into the learning experience. An accompanying guide will support community leaders and educators to embed the interactive learning experiences effectively into community conversations around resiliency. This project is aligned with NOAA’s Education Strategic Plan 2015-2035 by forwarding environmental literacy and using emerging technologies.
DATE: -
TEAM MEMBERS: Leigh Peake
resource research Public Programs
Although computer science drives innovations that directly affect our everyday lives, few K–12 students have access to engaging and rigorous computer science learning. This article describes an effort to democratize access to computer science education through a program based on inquiry, culturally relevant curriculum, and equity-oriented pedagogy.
DATE:
TEAM MEMBERS: Jean Ryoo
resource research Public Programs
Afterschool continues to be promoted as a complementary setting to school for strengthening science, technology, engineering, and math (STEM) education (for example, Krishnamurthi, Bevan, Rinehart, & Coulon, 2013). This is a reasonable idea: 10.2 million children and youth in the U.S. participate in structured afterschool programs (Afterschool Alliance, 2014), and the flexibility of afterschool settings allows for innovative approaches to STEM exploration and engagement.
DATE:
TEAM MEMBERS: Thomas Akiva Kaleen Tison Povis Ani Martinez
resource project Public Programs
Georgetown County Library will improve the digital-age critical workforce skills of local young people through STEM-related digital activities. Classes relating to online STEM resources, digital video production, and app development will result in increased skills and interpersonal abilities, as well as an appreciation for the public library as a dynamic and informative place. By working with a number of community organizations, the library seeks to reach a local youth community that has historically experienced high rates of poverty and low rates of high school completion, and build on previous efforts to provide job fairs, skills training, and other initiatives.
DATE: -
TEAM MEMBERS: Dwight McInvaill
resource project Media and Technology
The Young Developers program is an after school program conceptualised and run by The P-STEM Foundation. It introduces computer programming and design concepts to high school age students from South African historically disadvantaged communities, where the majority of students have had little or no interaction with computers. Young Developers uses Self Organised Learning Methodology and involves introducing a series of increasingly complex challenges / questions that the participants have to collaboratively solve. The first module is run in Scratch with the final objective being the creation of a racing car game. The second module is run in Python using Turtle graphics with an objective of creating an animation. This program runs as pods in each of the communities that the P-STEM foundation works in. Each pod has up to 30 teens from the age of 10 to 18. Each pod is peer led and peer driven, and the pace of learning is determined by the participants. In 2015, we would also like to introduce national competitions which pods participate in against other pods.
DATE: -
TEAM MEMBERS: The P-STEM Foundation Vari Mureriwa
resource project Public Programs
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
DATE: -
resource project Media and Technology
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
DATE: -
TEAM MEMBERS: Yasmin Kafai Karen Elinich Orkan Telhan
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Nationally, the US has a shortage of computer scientists; a big part of this problem is that girls are discouraged from learning computer science at a very young age. This project tries to address this problem by creating a videogame specifically oriented towards getting middle school girls interested in learning computer science concepts outside traditional programming classes. Based on evidence that stories provide a compelling way to present complicated technical subjects and that girls in particular respond to technology careers as a way to help others, the project is building a videogame called "Gram's House" in which social workers intend to move a fictional grandmother to a retirement home unless the player can outfit her home with sufficient technology for her to remain independent. Solving puzzles in the game requires learning core computer science concepts. Research studies will be conducted to determine whether the videogame is effective at getting girls interested in computer science, at teaching computer science concepts, and whether using stories makes videogames more effective for learning. This project based on an earlier successful prototype uses an iterative research-based design process including paper prototyping, playtesting, and focus groups (N=20) to create age appropriate activities, based on the CS Unplugged series, that support learning concepts from the Data, Internet, Algorithms, and Abstraction sections of the high-school level CS Principles curriculum. A quantitative, quasi-experimental design will be used to determine the overall effectiveness of teaching CS concepts under three types of game conditions: (a) games alone, (b) games with fictional settings, and (c) games with stories. A novel assessment instrument will be developed to assess content learning and qualitative observation using a standard observation protocol will be used to gauge interest and engagement. 70-80 middle school girls will be recruited for afterschool participation in the study in two states. As part of the dissemination efforts, a facilitator's guide, rule book, and materials such as maps and storyboards will be created and shared with the game. In addition, a workshop for computer science and other teachers who are interested in using games to teach CS concepts will be conducted.
DATE: -
TEAM MEMBERS: Elisabeth Gee Carolee Stewart-Gardiner
resource project Media and Technology
Northeastern University will design, test, and study GrACE, a procedurally generated puzzle game for teaching computer science to middle school students, in partnership with the Northeastern Center for STEM Education and the South End Technology Center. The Principal Investigators will study the effect of computer generated games on students' development of algorithmic and computational thinking skills and their change of perception about computer science through the game's gender-inclusive, minds-on, and collaborative learning environment. The teaching method has potential to significantly advance the state of the art in both game-based learning design and yield insights for gender-inclusive teaching and learning that could have broad impact on advancing the field of computer science education. Development and evaluation of GrACE will consist of two, year-long research phases, each with its own research question. The first, design and development, phase will focus on how to design a gender-inclusive, educational puzzle game that fosters algorithmic thinking and positive attitude change towards computer science. The content generator will be created using Answer Set Programming, a powerful approach that involves the declarative specification of the design space of the puzzles. The second phase will be an evaluation that studies, by means of a mixed-methods experimental design, the effectiveness of incorporating procedural content generation into an educational game, and specifically whether such a game strategy stimulates and improves minds-on, collaborative learning. Additionally, the project will explore two core issues in developing multiplayer, collaborative educational games targeted at middle school students: what typical face-to-face interactions foster collaborative learning, and what gender differences exist in how students play and learn from the game. The project will reach approximately 100 students in the Boston area, with long-term goals of reaching students worldwide, once the game has been tested with a local audience. Results of the project will yield a new educational puzzle game that can teach algorithmic thinking and effect attitude change regarding computer science. Through the process of creating a gender-inclusive game to teach computer science, it will provide guidelines for future educational game projects. Beyond these individual project deliverables, it will improve our understanding of the potential for procedural content generation to transform education, through its development of a new technique for generating game content based on supplying educational objectives.
DATE: -
TEAM MEMBERS: Northeastern University Gillian Smith Casper Harteveld
resource project Media and Technology
Discovering and understanding the temporal evolution of events hidden in text corpora is a complex yet critical task for knowledge discovery. Although mining event dynamics has been an important research topic leading to many successful algorithms, researchers, research and development managers, intelligence analysts and the general public are still in dire need of effective tools to explore the evolutionary trends and patterns. This exploratory project focuses on developing and validating a novel idea called narrative animation. Narrative animation uses animated visualizations to narrate, explore, and share event dynamics conveyed in temporally evolving text collections. Film art techniques are employed to leverage the animated visualizations in information organization and change detection, with the goals of enhancing analytical power and user engagement. A prototype system called CityStories is being developed to generate narrative animations of events in cities derived from web-based text. If this novel, risky research is successful, it is expected to yield fundamental results in narrative animation that can advance the current paradigm in information visualization and visual analytics by developing novel techniques in using animations for presenting and analyzing dynamic abstract data at a large scale. The pilot system CityStories system is expected provide a novel network platform for education, entertainment, and data analytics. It will engage general users such as students, teachers, journalists, bloggers, and many others in web information visualization and study. Results of this research will be disseminated through publications, the World Wide Web, and collaborations with researchers and analysts. The project web site (http://coitweb.uncc.edu/~jyang13/narrativeanimation/narrativeanimation.htm) will include research outcomes, publications, developed software, videos, and datasets for wide dissemination to public.
DATE: -
TEAM MEMBERS: Ye Zhao