Making experiences and activities are rich with opportunities for mathematical reasoning that often go unrecognized by both participants and educators. Since 2015, we have been exploring this potential through the Math in the Making initiative. The work focuses particularly on children’s museums and science centers, many of which have developed maker spaces and programs over the last decade. In this article, we share insights from our most recent round of research. To begin, we consider the fundamental question of what it means to authentically integrate mathematics with making.
This dissertation study investigates late-elementary and early-middle school field trips to a mathematics exhibition called Math Moves!. Developed by and currently installed at four science museums across the United States, Math Moves! is a suite of interactive technologies designed to engage visitors in open-ended explorations of ratio and proportion. Math Moves! exhibits emphasize embodied interaction and movement, through kinesthetic, multi-sensory, multi-party, and whole-body immersive experiences.
Many science museums and other informal-learning institutions offer exhibits and public
Since 1992, the WSU Math Corps, a combined mathematics and mentoring program, has worked to make a difference in the lives of Detroit’s children—providing them with the love and support that all kids need in the moment, while empowering them with the kinds of educational opportunities and sense of purpose, that hold the promise of good lives for themselves and a better world for all.
DATE:
TEAM MEMBERS:
Steve KahnStephen ChrisomalisTodd KubicaCarol Philips-BeyFrancisca Richter
Data are the workhorses of the scientific endeavor and their use is rapidly evolving (Haendel, Vasilevsky, and Wirz 2012). Ask almost any scientist about their work, and the conversation will involve the data they collect and analyze. The use of data in science is often captured in science classrooms as an ill-defined link between math and science that may not reflect authentic data practices (Tanis Ozcelik and McDonald 2013). Students often find themselves collecting data to confirm obvious conclusions within highly structured labs, and data become a way for students to demonstrate the
This paper examines STEM-based informal learning environments for underrepresented students and reports on the aspects of these programs that are beneficial to students. This qualitative study provides a nuanced look into informal learning environments and determines what is unique about these experiences and makes them beneficial for students. We provide results of a qualitative research study conducted with the Mathematics, Engineering, Science Achievement (MESA) program, an informal learning environment that has proven to be effective in recruiting, retaining and encouraging
DATE:
TEAM MEMBERS:
Cameron DensonChandra Austin StallworthChristine HaileyDaniel Householder
The Montana Girls STEM Collaborative brings together organizations and individuals throughout Montana who are committed to informing and motivating girls to pursue careers in STEM – Science, Technology, Engineering and Mathematics. The Collaborative offers professional development, networking and collaboration opportunities to adults who offer and/or support STEM programs for girls and other youth typically under-represented in STEM. The vision of Montana Girls STEM is that every young person in Montana has the opportunity to learn about STEM careers and feels welcome pursuing any dream they
DATE:
TEAM MEMBERS:
Suzi TaylorRay CallawayCathy Witlock
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This Research in Service to Practice project will address the issues around Informal Education of rural middle school students who have high potential regarding academic success in efforts to promote computer and IT knowledge, advanced quantitative knowledge, and STEM skills. Ten school districts in rural Iowa will be chosen for this study. It is anticipated that new knowledge on rural informal education will be generated to benefit the Nation's workforce. The specific objectives are to understand how informal STEM learning shapes the academic and psychosocial outcomes of rural, high-potential students, and to identify key characteristics of successful informal STEM learning environments for rural, high-potential students and their teachers. The results of this project will provide new tools for educators to increase the flow of underserved students into STEM from economically-disadvantaged rural settings.
The President's Council of Advisors on Science and Technology predicts a rapid rise in the number of STEM jobs available in the next decade, describing an urgent need for students' educational opportunities to prepare them for this workforce. In 2014, 62% of CEOs of major US corporations reported challenges filling positions requiring advanced computer and information technology knowledge. The project team will use a mixed methods approach, integrating comparative case study and mixed effects longitudinal methods, to study the Excellence program. Data sources include teacher interviews, classroom observations, and student assessments of academic aptitude and psychosocial outcomes. The analysis and evaluation of the program will be grounded in understanding the local efforts of school districts to build curriculum responsive to the demands of their high-potential student body. The project design, and subsequent analysis plan, utilizes a mixed methods approach, incorporating case study and longitudinal quantitative methods to analyze naturalistic data and build robust evidence for the implementation and impact of this program. This project will provide significant insights in how best to design, implement, and support informal out-of-school learning environments to broaden participation in the highest levels of STEM education and careers for under-resourced rural students.
Purpose: There is concern about a decline in mathematics achievement scores among U.S. students during the middle school years. For example, while 4th grade U.S. students rank 8th overall on an international mathematics comparison, by 10th grade U.S. student's drop significantly to 25th in the same comparison. Some researchers posit that much of this decline relates to how math is taught in the U.S. and with how students become less engaged as learners in middle school. The purpose of this project is to develop a web-based game to engage 7h grade students in a narrative-based story which will apply learning of content and skills aligned to the Common Core State Standards (CCSS) in mathematics.
Project Activities: During Phase I in 2012, the team developed a functioning prototype and conducted usability and feasibility research with fourteen 7th grade students. Researchers found that the prototype functioned as intended and that students were highly engaged while playing the game. In Phase II, the team will develop a fully-functional user interface with animated characters, interactivity across student users, narrative scripts and accompanying art assets, 36 problem sets, and student and teacher dashboards and databases. After development is complete, a pilot study will examine the usability and feasibility, fidelity of implementation, and the promise of the game to improve math learning. The study will include 120 students in 6 classrooms in three schools, with one classroom per school randomly assigned to use the game and the other half assigned to a business-as-usual control. Analyses will compare student scores on pre and post mathematics measures.
Product: Empires is a web-based game that addresses 36 pre-algebra Common Core State Standards in mathematics for 7th and 8th grades. The game follows a storyline in a recreation of an ancient empire which is at the brink of agricultural revolution and of becoming a trade economy. As students play the game, they engage in math-focused activities to drive the action, such as taxing citizens to learn ratios and proportions, allocating resources to learn percentages, and measuring the distance and time between a neighboring empire by applying the principles of the Pythagorean Theorem. As a socially networked game, students will interact with other students in the class to complete trades that lead to encounters with different math problems. The game will include two helpful, funny, advisors who will scaffold learning through mathematical discourse, arguing over the next most important thing to do. The game design architecture will work on a wide range of computers, including desktops and iPads. A teacher's guide and companion website will provide guidance to classroom activities that complement the game.
This project team is developing and testing a prototype of the Teachley Analytics Library, a platform intended to host third party-developed mathematics game apps for students in kindergarten through Grade 8. The prototype will include a dashboard to host games and generate formative assessment data to inform teacher instruction. In the Phase I pilot study, the team will examine whether the prototype functions as planned with 40 Grade 1 and 2 math teachers. The study will test if teachers are able to implement games within the classroom and utilize data to inform practice, and whether students are engaged by gameplay.
Mathematics is a notoriously disliked subject; there is so little stigma associated with being "bad at math", that educated adults openly describe themselves in this way. There are many reasons for math's unpopularity; chief among them is that school mathematics seldom offers opportunities to engage with the richness of this potentially fascinating subject. As a result, the mathematics education pipeline in the United States is more often a filter than a pump, siphoning students out rather than bringing them along. Children have libraries to help them fall in love with literature: where do they get a chance to fall in love with math? This project presents a unique opportunity to study children engaged with mathematics in an informal setting, the Minnesota State Fair, facilitated by mathematically knowledgeable volunteers. The Math On-a-Stick mathematical playground provides a place for children to engage with mathematics by exploring patters, asking quantitative questions, and investigating shape and space to mathematize their play. The project will observe and videotape this engagement to inform the design of mathematical learning environments in a variety of outside of school time settings, such as after school programs and summer camps, that are accessible to a wider range of the population. This project is co-funded by the EHR Core Research (ECR) and Advancing Informal STEM Learning (AISL) programs. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in three thematic areas: STEM learning and learning environments, broadening participation, and STEM workforce development. The AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
The project will investigate three research questions: (1) How does the design of various parts of the exhibit differently support rich mathematical interactions between children and mathematicians? (2) How do children engage different parts of the exhibit? How do differences in engagement relate to (a) exhibit design and (b) prior mathematical experience? (3) How do exhibit volunteers, mathematicians, and caregivers interact to support (or undermine) students' mathematical play? The project will use participant observation and videography to capture visitors' activities through the exhibit, analyzing them as qualitative case studies.
This project was submitted in response to EHR Core Research (ECR) program announcement NSF 15-509. The ECR program of fundamental research in STEM education provides funding in critical research areas that are essential, broad and enduring. EHR seeks proposals that will help synthesize, build and/or expand research foundations in the following focal areas: STEM learning, STEM learning environments, STEM workforce development, and broadening participation in STEM. The ECR program is distinguished by its emphasis on the accumulation of robust evidence to inform efforts to (a) understand, (b) build theory to explain, and (c) suggest interventions (and innovations) to address persistent challenges in STEM interest, education, learning, and participation.
In 2015, average mathematics scores on the National Assessment of Educational Progress (NAEP) declined in fourth and eighth grades, the first declines in mathematics at these grade levels since 1990. Declines in U.S. mathematics performance has important implications for overall STEM education as well as STEM workforce and international competitiveness. Researchers at Rutgers University will conduct an analysis to isolate the cause of the mathematics decline by investigating the dimensionality of the NAEP assessment, state-level outcomes, and demographic trends.
The team will use multilevel item response theory modeling techniques to investigate the declines by examining the factor structures to determine dimensionality across years. Researchers will examine subscores corresponding to each dimension of the factor structure at the state and national levels. In addition, subscores will be examined for trends in individual states and jurisdictions. Potentially, the analyses will allow for examination of factors related to state standards adoptions, demographic shifts, and participation rates.
The Wayne State University Math Corps is a mathematics enrichment and mentoring program that operates during summers and on Saturdays. The curriculum and the teach pedagogies in this informal learning program have documented success of supporting youths' mathematics learning as well as raising achievement levels in school. Through rigorous research and evaluation, this project seeks to analyze and understand the nature, extent, and reasons for Math Corps' success with youth learning in Detroit as well as the processes of program replication in three sites: Cleveland, OH; Utica, NY; and Philadelphia, PA. As such, this project will deepen understandings of program replication and of addressing the needs of youth in economically-challenged communities in order to promote mathematics learning.
The project's research studies will assess the multiple factors that make Math Corps successful with youth in Detroit and document the implementation of the program to the three replication sites. Research methods include discourse analyses, surveys, interviews, and pre/post-tests. The project will also conduct a retrospective evaluation of Math Corps based on quantitative datasets regarding both near-term and long-term youth outcomes.
This projects is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
DATE:
-
TEAM MEMBERS:
Steve KahnStephen ChrisomalisTodd KubicaCarol Philips-BeyFrancisca Richter