Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
Arizona State University (ASU) in collaboration with Arizona Science Center, Boeing, Intel, Microchip, Motorola, Salt River Project, AZ Foundation for Resource Education, AZ Game & Fish Department, US Partnership for the Decade of Education for Sustainable Development, Mesa Public Schools, and Boys & Girls Clubs of the East Valley, offer a three-year extracurricular project resulting in IT/STEM-related learning outcomes for 96 participants in grades 7, 8, and 9. The project targets and engages female and minority youth traditionally under-represented in IT/STEM fields in multi-year out-of-school technological design and problem solving experiences. These include summer internships/externships and university research in the science center and industrial settings where participants develop socially responsible solutions for challenging real world problems. The program includes cognitive apprenticeships with diverse mentors, opportunities to practice workplace skills such as leadership, teamwork, time management, creativity and reporting, and use of technological tools to gather and analyze complex data sets. Participants simulate desert tortoise behaviors, research and develop designs to mitigate the urban heat island, build small-scale renewable energy resources, design autonomous rovers capable of navigating Mars-like terrain, and develop a model habitat for humans to live on Mars. Together with their families participants gain first-hand knowledge of IT/STEM career and educational pathways. In addition to youth outcomes, the adults associated with this project are better prepared to positively influence IT/STEM learning experiences for under-represented youth. The evaluation measures participant content knowledge, attitudes and interest in IT/STEM subjects, workplace skills and intentions to pursue IT/STEM educational and career pathways to understand participant reactions, learning, transfer and results. Informal curricula developed through this project, field-tested with youth at Boys & Girls Clubs and youth at Arizona Science Center will be available on the project website.
DATE:
-
TEAM MEMBERS:
Tirupalavanam GaneshMonica ElserStephen KrauseDale BakerSharon Robinson-Kurplus
The "Salmon Research Team: A Native American Technology, Research and Science Career Exposure Program" is a three-year, youth-based ITEST project submitted by the Oregon Museum of Science and Industry. The project seeks to provide advanced information technology and natural science career exposure and training to 180 middle level and high school students. Mostly first-generation college-bound students, the target audience represents the Native American community and those with Native American affiliations in reservation, rural and urban areas. Students will investigate computer modeling of complex ecological, hydrological and geological problems associated with salmon recovery efforts. Field experiences will be provided in three states: Oregon, Washington and northern California. The participation of elders and tribal researchers will serve as a bridge between advanced scientific technology and traditional ecological knowledge to explore sustainable land management strategies. Students will work closely with Native American and other scientists and resource managers throughout the Northwest who use advanced technologies in salmon recovery efforts. Student participation in IT-dependent science enrichment and research activities involving natural science fields of investigation will occur year round. Middle school students are expected to receive at least 330 contact hours including a one-week summer research experience, a one-week spring break program, and seven weekends of residential programs during the school year. The high school component consists of 460 contact hours reflecting one additional week for the summer research experience. In addition to watershed and salmon recovery related research, students will be involved in other ancillary research projects. A vast array of partners are positioned to support the field research experience including, for example, the U.S. Department of the Interior, Redwood National State Park, College of Natural Resources and Sciences at Humboldt State University, Confederated Tribes of the Warm Springs, University of Oregon Institute of Marine Biology, University of Washington Columbia Basin Research project, the Northwest Center for Sustainable Resources at Chemeketa Community College and the Integrated Natural Resource Technology program at Mt. Hood Community College. The project is intended to serve as a model for IT-based youth science programs that address national and state education standards and are relevant to the cultural experience of Native American students. Two mentors will provide continued support to students: an academic mentor at the student's schools and a professional mentor from a local university or natural resource agency. Incentives will be provided for student participation including stipends and internships. Career exposure and work-related skills are integrated throughout the project activities and every program component. Creative strategies are used to encourage family involvement including, for example, salmon bakes and museum discounts.
DATE:
-
TEAM MEMBERS:
Travis Southworth-NeumeyerDaniel Calvert
Overarching evaluation questions focus on continuous improvement, the degree to which the Salmon Camp project achieves its objectives with regards to students' skills and attitudes, as well as implementation and outcome questions. Evaluation activities are designed to probe five major areas: 1. Student Knowledge and Skills. To what extent do students gain experience with digital tools, field research, and workplace skills? 2. Student Attitudes. How are students' attitudes and self-efficacy as science students changing with involvement in Salmon Camp? How are career interests changing or
DATE:
TEAM MEMBERS:
Phyllis AultOregon Museum of Science and Industry
Overarching evaluation questions focus on continuous improvement, the degree to which the Salmon Camp project achieves it's objectives with regards to students' skills and attitudes, as well as implementation and outcome questions. Evaluation activities are designed to probe five major areas: 1. Student Knowledge and Skills. To what extent do students gain experience with digital tools, field research, and workplace skills? 2. Student Attitudes. How are students' attitudes and self-efficacy as science students changing with involvement in Salmon Camp? How are career interests changing or
DATE:
TEAM MEMBERS:
Phyllis AultOregon Museum of Science and Industry
A Museum-based After-School Program Examining Amphibian Ecology is a partnership between Dr. David Skelly's research lab and the Peabody Museum at Yale University in New Haven, Connecticut. The program will engage 20 middle and 20 high school students from under-represented groups in the New Haven Public Schools in an experiential program focused on science literacy, STEM career awareness and college preparation. The program is based on Dr. Skelly's work on the meta-community dynamics of amphibians and their predators and the scale up from local dynamics to larger spatial scales. This program combines an environment-based research program with an established youth program called "Evolutions." Participants conduct hands-on research activities at Dr. Skelly's Connecticut research site, develop a traveling museum exhibition, host an ecology seminar series, present their work at local schools and produce their own science pod casts. The work of the young people will reach a wider local audience numbering in the thousands with the museum exhibits pod casts and elementary school outreach programs. The project will result in a program tool kit including strategies for setting up these types of partnerships, how to engage families and how to administer the program.
Wyoming EPSCoR's education, outreach and diversity programs include undergraduate and graduate research and student achievement support, K-12 educational programs and teacher trainings, diversity programs targeted at increasing the representation of URGs in the sciences, and research infrastructural improvements on the community college level. Our current Track-1 Award through NSF EPSCoR is related to understanding the water balance through hydrology, ecology, and geophysics; and most of our programs include a heavy emphasis in that area.
The C-DEBI education program works with audiences at all levels (K-12, general public, undergraduate, graduate and beyond) in formal and informal settings (courses, public lectures, etc.). Sub-programs focus on community college research internships and professional development for graduate students and postdocs.