Skip to main content

Community Repository Search Results

resource project Media and Technology
This Innovations in Development project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

Quantum information science (QIS) is an emergent cross-disciplinary field at the interface of physics, computer science, materials science, and engineering. Yet, there are few educational programs that encourage young people to explore QIS and understand its applications and societal benefits. Such programs are critical for supporting the growth of a quantum-ready workforce. Building intuition is a foundational first step but this is challenging because quantum effects are neither visible to the naked eye, nor experienced in everyday life. This project will create a suite of accessible, engaging digital games for middle schoolers, and study their effectiveness in cultivating intuition around QIS. Relating QIS concepts to common game mechanics is designed to increase students’ confidence in their QIS knowledge, reduce their fear of tackling such a subject, and consider pursuing a career in this field or another STEM area. The game-driven design appeals to a broad population beyond the age groups studied. Moreover, the deliverables will be freely available online, which allows anyone with a phone or computer and internet access a way to learn about QIS in an engaging, play-based environment. The program will partner with teacher organizations and other community groups to share the games, maximizing the project’s impact.

The project is guided by the QIS Key Concepts developed in 2020, as well as research and best practices on gamification of learning. The games will be designed for 6th-8th grade students in an informal setting, focusing on the concepts of probability, superposition, and role of measurement. A game world titled "Quander" will include videos that explicitly tie game experiences to QIS concepts and applications. The project will evaluate students' understanding after playing the games and watching the videos, how they engage with aspects of the games, and how the game impacted their interest in QIS. The project data will advance understanding of how to facilitate QIS informal learning experiences in ways that engage young audiences in QIS and similar abstract emerging areas of technology where current research is scant. This project represents one of the first efforts to teach QIS concepts in ways that connect directly to young learners’ play-based experiences. Data gathered from the project will help future program designers understand the ability of young learners to reason about QIS concepts such as measurement, superposition and probabilities in game contexts, providing insights to the ages at which students are ready for more technical content.
DATE: -
TEAM MEMBERS: Diana Franklin Emily Edwards Danielle Harlow
resource project Exhibitions
There is a dearth of prominent STEM role models for underrepresented populations. For example, according to a 2017 survey, only 3.1% of physicists in the United States are Black, only 2.1% are Hispanic, and only 0.5% are Native American. The project will help bridge these gaps by developing exhibits that include simulations of historical scientific experiments enacted by little-known scientists of color, virtual reality encounters that immerse participants in the scientists' discovery process, and other content that allows visitors to interact with the exhibits and explore the exhibits' themes. The project will develop transportable, interactive exhibits focusing on light: how we perceive light, sources of light from light bulbs to stars, uses of real and artificial light in human endeavors, and past and current STEM innovators whose work helps us understand, create, and harness light now. The exhibits will be developed in three stages, each exploring a characteristic of light (Color, Energy, or Time). Each theme will be explored via multiple deliveries: short documentary and animated films, virtual reality experiences, interactive "photobooths," and technology-based inquiry activities. The exhibit components will be copied at seven additional sites, which will host the exhibits for their audiences, and the project's digital assets will enable other STEM learning organizations to duplicate the exhibits. The exhibits will be designed to address common gaps in understanding, among adults as well as younger learners, about light. What light really is and does, in scientific terms, is one type of hidden story these exhibits will convey to general audiences. Two other types of science stories the exhibits will tell: how contemporary research related to light, particularly in astrophysics, is unveiling the hidden stories of our universe; and hidden stories of STEM innovators, past and present, women and men, from diverse backgrounds. These stories will provide needed role models for the adolescent learners, helping them learn complex STEM content while showing them how scientific research is conducted and the diverse community of people who can contribute to STEM innovations and discoveries.

The project deliverables will be designed to present complex physics content through coherent, immersive, and embodied learning experiences that have been demonstrated to promote engagement and deeper learning. The project will research whether participants, through interacting with these exhibits, can begin to integrate discrete ideas and make connections with complex scientific content that would be difficult without technology support. For example, students and other novices often lack the expertise necessary to make distinctions between what is needed and what is extra within scientific problems. The proposed study follows a Design-Based Research (DBR) approach characterized by iterative cycles of data collection, analysis, and reflection to inform the design of educational innovations and advance educational theory. Project research includes conceiving, building, and testing iterative phases, which will enable the project to capture the complexity of learning and engagement in informal learning settings. Research participants will complete a range of research activities, including focus group interviews, observation, and pre-post assessment of science content knowledge and dispositions.

By showcasing such role models and informing about related STEM content, this project will widen perspectives of audiences in informal learning settings, particularly adolescents from groups underrepresented in STEM fields. Research findings and methodologies will be shared widely in the informal STEM learning community, building the field's knowledge of effective ways to broaden participation in informal science learning, and thus increase broaden participation in and preparation for the STEM-based workforce.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Todd Boyette Jill Hamm Janice Anderson Crystal Harden
resource evaluation Media and Technology
Supported by the National Science Foundation, the Global Soundscapes! Big Data, Big Screens, Open Ears project employs a variety of informal learning experiences to present the physics of sound and the new science of soundscape ecology. The interdisciplinary science of soundscape ecology analyzes sounds over time in different ecosystems around the world. The major components of the Global Soundscapes project are an educator-led interactive giant-screen theater show, group activities, and websites. All components are designed with both sighted and visually impaired students in mind. Multimedia
DATE:
TEAM MEMBERS: Barbara Flagg Allan Brenman
resource research Media and Technology
The aim of the study was to analyse learning using Augmented Reality (AR) technology and the motivational and cognitive aspects related to it in an informal learning context. The 146 participants were 11- to 13-year-old Finnish pupils visiting a science centre exhibition. The data, which consisted of both cognitive tasks and self-report questionnaires, were collected using a pre- post-test design and were analysed by SEM path-analysis. The results showed that AR-technology experience was beneficial for all, but especially for the lowest-achieving group and for the girls. In general, pre
DATE:
TEAM MEMBERS: Hannu Salmi Helena Thuneberg Mari-Pauliina Vainikainen
resource project Media and Technology
Well-designed educational games represent a promising technology for increasing students interest in and learning of STEM topics such as physics. This project will research how to optimally combine and embed dynamic assessment and adaptive learning supports within an engaging game design to build effective educational games. The project will add enhancements to a physics game called Physics Playground. The general goal of this research is to test a valid methodology that can be used in the design of next-generation learning games. The enhancement of Physics Playground will leverage the popularity of video games to capture and sustain student attention and teach physics to a much broader audience than is currently the case in traditional physics classrooms. To be most effective, this new genre of learning games needs to not only be highly engaging as a game but also to provide real-time assessment and feedback to students; support understanding of science content (i.e.,Newtonian physics); be accessible to beginners; accommodate a range of proficiencies and interests; and support equity. The research will have particular relevance to designers developing other science games and simulation by providing information about the kinds of learning supports and feedback to students are most effective in promoting engagement and learning. The project is supported by the Cyberlearning and Future Learning Technologies Program, which funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively.

The project will systematically develop, test, and evaluate ways to integrate engaging, dynamic learning supports in Physics Playground to teach formal conceptual physics competencies. More generally, the project aims to advance the learning sciences, particularly in the fields of adaptivity and assessment in educational technology. Using a design-based research approach spanning three years, the research team will: (1) develop and test the effectiveness of various learning support features included in the game in Year 1; (2) develop and test an adaptive algorithm to manage the progression of difficulty in game levels in Year 2; and (3) test learning supports and adaptive sequencing in a controlled evaluation study. This research will provide evidence of the instructional effectiveness of an educational game designed using principles of instructional, game, and assessment design. It will advance understanding of the contributions of different kinds of learning supports (e.g., visualizations and explanations) and adaptivity to game-based learning and contribute to the design of next-generation learning games that successfully blur the distinction between assessment and learning. The project will generate research findings that can be incorporated into other types of STEM learning games.
DATE: -
TEAM MEMBERS: Valerie Shute Russell Almond Fengfeng Ke
resource research Media and Technology
This article describes how two inquiry games promoted student science skills in a museum setting while minimizing demands on teachers, fostering collaboration, and incorporating chaperones. Students who played these games engaged in more scientific inquiry behaviors than did students in control groups.
DATE:
TEAM MEMBERS: Kerri Wingert
resource research Media and Technology
Despite the potential of augmented reality (AR) in enabling students to construct new understanding, little is known about how the processes and interactions with the multimedia lead to increased learning. This study seeks to explore the affordances of an AR tool on learning that is focused on the science concept of magnets and magnetic fields. Seventy students in grades 5 through 7 participated in the study in a non- AR or AR condition. Findings showed that students in the AR condition interacted with the magnets significantly longer and demonstrated higher amounts of teamwork. In interviews
DATE:
TEAM MEMBERS: Susan Yoon Joyce Wang
resource project Media and Technology
Informal Education at NASA Centers: Extending the Reach is a highly leveraged, modular, project-based approach to improving education opportunities for students, formal and informal educators, and life-long learners in NASA Ames Research Center’s local community and beyond. In partnership with the Aerospace Education, Research and Operations (AERO) Institute, NASA Ames has been developing two projects: Exploration Center Field Trips and Field Trip in a Box. California Teaching Fellows Foundation, as a sub awardee, has been expanding their After School University (ASU) program. The division has the goal of supporting NASA’s Education Outcome 2 with improved educational opportunities for all in the NASA Ames Visitor Center and opportunities to bring NASA content into the classroom to improve students understanding of STEM as well as improve teachers understanding and ability to teach NASA-related STEM topics. The division also has the goal of supporting NASA’s Education Outcome 3 by expanding ASU to include NASA-based STEM learning opportunities to 360 additional students in six rural schools as well as train 12 additional Teaching Fellows (Fresno State University future teachers). Through these objectives, NASA Ames has produced 10 Field Trip in a Box kits as well as new and expanded learning opportunities for all, especially 3rd – 8th grade classes, in the NASA Ames Visitor Center. ASU has reached 500 students in 10 schools and hosted 12-14 year old learners in a five-week computer-based flight simulation class, called Flying for Future Pilots.
DATE: -
TEAM MEMBERS: Brenda Collins
resource research Media and Technology
The article offers information on using video games as a strategy for Science, Technology, Engineering and Math (STEM) learning. According to a study from the University of California, San Francisco, which says playing video games help develop learning capabilities in children. It discusses two games Portal and Minecraft which are used to design learning systems Teach with Portals (TWP) for teaching physics and mathematics, and MinecraftEdu for teaching engineering, physics and mathematics.
DATE:
TEAM MEMBERS: Brian Jenkins
resource project Media and Technology
Quarked!™ is a collaborative physics education project at the University of Kansas that provides engaging and educational science experiences for youth ages 7 and up, educators and the general public. This multimedia project material focuses on concepts of scale and matter, and presents subatomic particles as relatable characters in both human and quark or electron form that explore science through story-driven adventures. It includes a comprehensive website with a range of materials including animated videos, games, apps, FAQs and lesson plans, as well as hands-on education programs at the University of Kansas Natural History Museum. Initially, funded through an NSF EPSCoR grant (Grant No. EPS-0236913 and matching support from the State of Kansas through the Kansas Technology Enterprise Corporation and EPP-0354836), this projects continued to grow and new resources have been added through funding from the Kauffman Foundation, Google grants and other NSF awards. Quarked.org attracts more than 75,000 unique visitors annually, local PBS television stations in Kansas and Missouri broadcast the 3D animated videos, and the museum programs have reached more than than 5,000 school participants and continue to be offered.
DATE: -
TEAM MEMBERS: Kristin Bowman-James Teresa MacDonald
resource project Media and Technology
The New York Hall of Science, in collaboration with the Tufts Center for Engineering Education, the Learning Games Network, and New York City departments of education and of parks and recreation, is creating and testing two innovative science games to support student learning about frictional force and linear motion. SciGames integrates rigorous, highly motivating, data collection activities conducted in museum and playground settings, with in-depth data analysis and additional scientific investigation in the classroom. The primary goals of the SciGames project are to increase student motivation and interest in science and improve student learning about core physical science concepts. This exploratory project targets underrepresented urban students and their teachers from 20 schools in New York City (NYC) and through its partnership with NYC department of parks and recreation has great potential for scale-up throughout NYC, as well as dissemination to other urban communities. The SciGames model creates experiences for students that build on the positive, fun, free-choice learning characteristics of informal settings; promotes learning through repeated game-like experimentation and play; and supports students' sustained interest and learning in science classrooms where core concepts are formalized. The project is based on four design principles: (1) SciGames turns students' informal experiences into a game, (2) SciGames makes science content an integral part of game play, (3) SciGames generates data for further analysis during game play, and (4) SciGames, through the use of digital apps, supports students inquiring into data back in their classrooms. Researchers are developing the games using rigorous, well constructed, iterative cycles of design, development, testing, evaluation, and revision with different groups of NYC students and teachers. Pre and post data on students\' science learning and affect are being used to inform the design cycles. Over a two-year period, SciGames will produce two science games and associated digital apps, and a portable kit that supports game implementation, data collection and analysis. SciGames is an important experiment, combining the informal, engaging aspects of play with more formal science investigation to encourage and sustain the interest, participation, and learning of underrepresented students in STEM. This project has the potential to transform how we think of and structure science learning for middle school students.
DATE: -
resource project Media and Technology
In this full-scale research and development project, Oregon State University (OSU), Oregon Sea Grant (OSG) and the Hatfield Marine Science Center Visitors Center (HMSCVC) is designing, developing, implementing, researching and evaluating a cyberlaboratory in a museum setting. The cyberlaboratory will provide three earth and marine science learning experiences with research and evaluation interwoven with visitor experiences. The research platform will focus on: 1) a climate change exhibit that will enable research on identity, values and opinion; 2) a wave tank exhibit that will enable research on group dynamics and problem solving in interactive engineering challenges; and 3) remote sensing exhibits that will enable research on visitor interactions through the use of real data and simulations. This project will provide the informal science educaton community with a suite of tools to evaluate learning experiences with emerging technologies using an iterative process. The team will also make available to the informal science community their answers to the following research questions: For the climate change exhibit, "To what extent does customizing content delivery based on real-time visitor input promote learning?" For the wave tank exhibit, "To what extent do opportunities to reflect on and share experiences promote STEM reasoning processes at a build-and-test exhibit?" For the data-sensing exhibit, "Can visitors' abilities to explain or use visualizations be improved by shaping their visual searches of images?" Mixed-methods using interviews, surveys, behavioral instruments, and participant observations will be used to evaluate the overall program. Approximately 60-100 informal science education professionals will discuss and test the viability of the exhibit's evaluation tools. More than 150,000 visitors, along with community members and local middle and high school students, will have the opportunity to participate in the learning experiences at the HMSCVC. This work contributes to the fields of cyberlearning and informal science education. This project provides the informal science education field with important knowledge about learning, customized content delivery and evaluation tools that are used in informal science settings.
DATE: -
TEAM MEMBERS: Shawn Rowe Nancee Hunter Jenny East