The purpose of this three-year collaborative design research project is to examine the role of culture in the development of knowledge and reasoning about the natural world and the subsequent sense-making of and participation in natural resource management. The PIs propose to examine the ways in which culture impacts observational habits, explanation constructing, uses and forms of evidence, and orientations towards socio-scientific challenges such as natural resource management. Collaborating on this project are researchers from the American Indian Center of Chicago, Northwestern University, and the Menominee Indian Tribe of Wisconsin. The audience for this study includes the academic informal science education community and indigenous science educators. This project also offers extensive cross-cultural, cross-disciplinary research opportunities for pre- and post-doctoral research trainees. The project will employ a mixed methods approach and proposes evaluation through an advisory board and community input. A community assessment team is proposed to review activities, obtain feedback from the larger community, and identify challenges to the effective implementation of the program. The project is comprised of two main panels of studies: the first consisting of a series of investigations of learning in everyday activities and the second consisting of two community design experiments that engage two Native American communities and two non-Native communities, one rural and one urban for both communities, in a culturally based citizen science (CBCS) project focused on ecosystem disruption (e.g. invasive species; climate change) and natural resource management. The CBCS project will engage participants in question formation, data collection, data analysis, forming policy recommendations, and citizen action around the findings. This project will develop a citizen science model that effectively engages diverse communities towards productive science learning, helpful scientific data collection, and citizen engagement in community planning and local policy decisions. The researchers believe that fundamental advances in STEM teaching and learning are needed across the broad landscape of learning environments and that the success of such advances may pivot on innovations and discoveries made in informal environments. Insights obtained from prior research on learning in indigenous cultures, especially in biological and environmental sciences, combined with the anticipated results from this study could lead to a deeper understanding of cross-cultural similarities and differences in science learning.
DATE:
-
TEAM MEMBERS:
Karen WashinawatokMegan BangDouglas MedinUniversity of Washington
The Cornell Lab of Ornithology is creating a new type of interactive, question-driven, online bird-identification tool called "Merlin," along with associated games, social networking tools, and other media. Unlike existing bird-identification guides, which are based on traditional taxonomic keys written by scientists, Merlin uses machine learning algorithms and crowd-sourced data (information provided by thousands of people) to identify birds and improve Merlin's performance with each interaction. The tool will help millions of people identify birds and participate in a collective effort to help others. The Crowd ID project will make it easier for people to discover the names of birds, learn observation and identification skills, find more information, and appreciate Earth's biodiversity. The summative evaluation plan is measuring increases in participants' knowledge, engagement, and skills, as well as changes in behavior. Impacts on participants will be compared to a control group of users not using Merlin. Merlin tools will be integrated into the Cornell Lab's citizen science and education projects, which reach more than 200,000 participants, schoolchildren, and educators across the nation. Merlin will be broadly adapted for use on other websites, social networking platforms, exhibits, mobile devices, curricula, and electronic field guides. Once developed, Merlin can be modified to identify plants, rocks, and other animals. Merlin will promote growth of citizen science projects which depend on the ability of participants to identify a wide range of organisms.
The University of Pittsburgh's Center for Learning in Out-of-School Environments (UPCLOSE), the Carnegie Museum of Natural History, and the Robotics Institute at Carnegie Mellon University are building an open access cyberlearning infrastructure that employs super high-resolution gigapixel images as a tool to support public understanding, participation, and engagement with science. Networked, gigapixel image technology is an information and communication technology that creates zoomable images that viewers can explore, share, and discuss. The technology presents visual information of scientifically important content in such detail that it can be used to promote both scientific discovery and education. The purpose of the project is to make gigapixel technology accessible and usable for informal science educators and scientists by developing a robotic imaging device and online services for the creation, storage, and sharing of billion-pixel images of scientifically important content that can be analyzed visually. Project personnel are conducting design activities, user studies, and formative evaluation studies to support the development of a gigapan technology platform for demonstration and further prototyping. The project builds on and leverages existing technologies to provide informal science education organizations use of gigapixel technology for the purpose of facilitating three types of activities that promote participatory learning by the public--Public Understanding of Science activities; Public Participation in Scientific Research activities; and Public Engagement in Science activities. The long-terms goals of the work are to (1) create an accessible database of gigapixel images that informal science educators can use to facilitate public-scientist interactions and promote participatory science learning, (2) characterize and demonstrate the affordances of networked gigapixel technologies to support socially-mediated, science-focused cyberlearning experiences, (3) generate knowledge about how gigapixel technology can enable three types of learning interactions between scientists and the public around visual data, and (4) disseminate findings that describe the design, implementation, and evaluation of the gigapixel platform to support participatory science learning. The project\'s long-term strategic impacts include guiding the design of high-resolution images for promoting STEM learning in both informal and formal settings, developing an open educational resource and science communication platform, and informing informal science education professionals about the use and effectiveness of gigapixel images in promoting participatory science learning by the public.
The University of Minnesota and the University of Florida are collaborating on the creation of a Master Naturalist Program for adults that will serve as a model for nationnwide dissemination. This program, which builds on the existing Florida Master Naturalist Program, will provide intensive 40-hour training sessions in ecology, natural/cultural history and the environment for volunteers in Minnesota. Participants will then complete 40 hours of supervised volunteer service at local natural history centers while volunteers in both Florida and Minnesota will have the option of participating in advanced training workshops. Staff members at informal science education institutions and natural history centers take part in train-the-trainer workshops to assist with dissemination. Deliverables include three training modules (Big Woods, Big Rivers; Prairies and Potholes; North Woods, Great Lakes), advanced training workshops, local Master Naturalist Chapters, annual conferences, training materials and workshops for Master Naturalist Instructors, and a project website. It is anticipated that this project will result in the implementation of 64 Master Naturalist workshops, directly reaching 1,280 volunteers, while 750 participants are anticipated for advanced training workshops. It is estimated that 130 staff will participate as Master Naturalist Instructors. Indirect impacts will be realized as volunteers contribute more than 51,000 hours in service to nature centers and informal science institutions interacting with public audiences while conducting natural history activities. Strategic impact will be realized in the outcomes of the comprehensive evaluation plan that will assess immediate and longitudinal impacts on public and professional audiences.
DATE:
-
TEAM MEMBERS:
Robert BlairMartin MainAmy RagerKaren Oberhauser
The Maryland Science Center, in partnership with SK Films, Inc. received NSF funding to produce a large format, 2D/3D film and multi-component educational materials and activities on the annual migration of monarch butterflies, their life cycle, the web of life at select sites where they land, and the citizen science efforts that led to the monarch migration discovery. Project goals are to 1) raise audience understanding of the nature of scientific investigation and the open-ended nature of the scientific process, 2) enhance and extend citizen science programs to new audiences, and 3) create better awareness of monarch biology, insect ecology and the importance of habitat. Innovation/Strategic Impact: The film has been released in both 3D and 2D 15/70 format. RMC Research Corporation has conducted evaluation of the project, both formatively and summatively, including a study of the comparable strengths of the 2D and 3D versions of the film. RMC has conducting formative evaluation and is currently conducting summative evaluation to assess the success of project materials in communicating science and achieving the project's learning goals. Collaboration: This project employs a collaborative model of partnerships between the project team and the National Science Teachers Association (NSTA), the University of Minnesota's Monarchs in the Classroom and Monarch Watch. Project advisors represent world-renown monarch butterfly research scientists and educators, including Dr. Karen Oberhauser, named a "Champion of Change" by President Obama in June 2013, and Dr. Chip Taylor, founder and director of Monarch Watch at the University of Kansas.
The Oregon Museum of Science and Industry (OMSI) will create a 5,000 sq ft traveling exhibition designed to engage families with children ages 10-14 with concepts of algebra. Access Algebra will increase visitor awareness of the role of algebra in everyday life and help them to develop algebraic thinking skills. This exhibition will travel to 21 science centers, reaching some 3.5 million visitors on its national tour. It will be accompanied by an Educator's Guide, Family Guide, and complementary web activities. Access Algebra incorporates testing and implementation of an innovative model for professional development for museum exhibit, program, and interpretive staff. It links the exhibition tour to training at each venue designed to increase knowledge of algebra concepts and to develop facilitation skills in family math learning. The package includes workshops, training DVD, printed guide, Math Toolkit, and website support. Project partners include TERC, Oregon State University College of Education (OSU), and Blazer Boys & Girls Club (BBGC). The BBGC members will participate in exhibit development over an extended (12-week) period, helping to create an exhibition that will engage a target audience of underserved low-income youth. The strategic impact of Access Algebra derives from the development and testing of effective strategies for engaging audiences in exhibit-based informal math learning, along with increasing the capacity of the field for facilitating these kinds of experiences through a new model for professional development.
This two-year project is communicating the results of scientific discoveries produced by an on-going LTER (Long-term Ecological Research) project devoted to understanding the Everglades ecosystem. Specifically, Dr. Heithaus is capitalizing on the discoveries funded through 0620409 (Coastal Oligotrophic Ecosystems Research) about the role of large-bodied, top predators in the Everglades, including bull sharks (Carcharhinus leucas) and American alligators (Alligator mississippiensis). The STEM content of this project is biology, in particular ecology, the environment, and conservation. These results are being communicated via: (1) multimedia exhibit presentations at multiple museums and nature centers in southern Florida, primarily the Museum of Discovery and Science (MODS), located in Ft. Lauderdale near the Everglades and (2) online dissemination of mini-documentaries and other educational components at social media websites and the LTER web site. The target audience for the museum exhibit components includes learners from diverse cultural backgrounds, such as urban family groups reflecting the demographics of southern Florida. This project will also develop a documentary about Everglades ecology that is planned for dissemination on a cable TV channel devoted to natural history. In order to link with formal education, related educational deliverables are being produced for use in science classroom settings (grades 4 through 12) that are aligned with the state science standards and benchmarks. Formative assessment conducted by museum staff and university students will evaluate learning outcomes as they relate to STEM content learning goals. After the two-year funding period, the science learning opportunities produced from the current Communicating Research to Public Audiences (CRPA) project will be sustained as the exhibit travels to other venues and as web deliverables are accessed on-line.
The Louisiana State Museum and Tulane University/Xavier University Center for Bioenvironmental Research and the University of Rhode Island Graduate School of Oceanography, along with several other research collaborators, designers, evaluators, and the Times-Picayune newspaper are partnering to develop a multi-pronged approach on educating the general public, school children, teachers and public officials on the STEM-related aspects of Hurricane Katrina and its implications for the future of New Orleans and other parts of the country. The major products will be an 8,500 square-foot semi-permanent exhibit, smaller exhibits for Louisiana regional libraries, a comprehensive Web site on hurricanes, a set of studies on informal learning, a case study for public officials about the relevance of science research to policy and planning, teacher workshops, and a workshop for interested exhibit designers from around the country. This project advances the field of informal science education by exploring how museums, universities, and their communities can work together to provide meaningful learning experiences on STEM topics that are critical to solving important community and national issues.
The Addressing Gender Barriers in STEM through Theatre of Social Engagement project responds to the need to educate the public about the careers in computer and information science and engineering (CISE) fields by educating high school students, parents, teachers and counselors about the barriers to participation that confront women and other underrepresented groups. In this Communicating Research to Public Audiences (CRPA) project, a dramatic play is used to communicate the findings from the PI's work which resulted in a theory about gender and IT to explain and predict gender (under)representation in IT fields. The play dramatizes constructs of the theory, particularly the ways in which gender, ethnicity, and class affect identity and career and life decisions. Drawing from life history interviews conducted as a part of the research, the storyline of the dramatic play centers on three young women who are graduating from high school and making decisions about their futures and possible careers in IT. Situated squarely in the realm and literature of "theatre of social engagement," this play, and its staged readings and ancillary website, extend access beyond the scientific community to new scientific research on gender barriers in CISE. Learning goals for the project include: 1. Awareness and knowledge about possible computer and information science and engineering careers; barriers and stereotypes that affect CISE career choice among women; and "significant others" such as partners, family members, mentors and teachers who can make a difference at key inflection points in career decision making. 2. Attitude change about the CISE fields being open to everyone regardless of gender, ethnicity, race or class; how one's individual characteristics can be used to resist barriers to inclusion in CISE careers. 3. Intended behavior about learning more about CISE careers and educational opportunities; and responding to negative stereotypes related to CISE. Evaluation of the proposed project will include observations, talk-back sessions (focus groups) after readings of the play, pre-post surveys administered at the showings, and a second post-performance survey to be administered a certain amount of time after the showing. Dissemination will be through readings of the play for audiences in New Jersey and Pennsylvania, with partnering informal learning venues, and through an associated website which will allow visitors to download and stage the play themselves. Advertisement for the play and the website will take place through websites such as Facebook, Twitter, and websites that promote diversity in computing. In addition, the PI intends to contribute to the scholarly literature on theatre as an informal learning approach and on the findings of how audiences respond to the play itself.
The California Environmental Legacy Project is a new kind of educational media project. Through an integrated package of programs and media resources, it seeks to build public understanding about about environmental change and the deep and inextricable connections we have with the natural world. The Project has three interwoven media programs: "Becoming California," is a two-hour public television documentary that takes a fresh look at our past, present and future relationship with California's changing environment. Produced for a national public television audience, the target for broadcast is summer 2014. The Changing Places Initiative is a package of regional films created for selected state and national parks in California. Produced as standalone and companion programs to the broadcast program, the films are planned for release in park visitor centers beginning in summer 2014. A companion website aims to increase public understanding of environmental change by integrating the project's video program into an engaging and interactive user interface that offers streaming video, educational resources and social networking tools. Audience Research is a key element of the project that guides development of its media and provides feedback on its overall effectiveness. Project partners include California State Parks, the National Park Service and U.S. Geological Survey. KQED-TV in San Francisco is serving as its presenting station for PBS broadcast. The Project is led by team of distinguished scientists, leading educators and award-winning media professionals.
DATE:
-
TEAM MEMBERS:
James BaxterKit TylerJeffrey WhiteDavid Scheerer
Situated within the framework of their NSF funded sociolinguistic research, partnering institutions, Gallaudet University and the University of California-Davis, will develop and broadly disseminate a 2-hour DVD that builds knowledge and fosters community awareness, among informal and formal audiences, about the scientific structure and history of American Sign Language (ASL), with an emphasis on Black American Sign Language. Through this Communicating Research to Public Audiences (CRPA) grant, the DVD and its existing companion guidebook will: (a) link ASL to current empirical research; (b) describe the complexities of the science of language development (written and spoken); (c) detail the evolution of Black American Sign Language; (d) provide strong evidence that sociolinguistic variations and dialects are not unique to spoken languages; and (e) foster related discussions in formal and informal settings. The project will involve ASL interpreters and hearing, hearing impaired and deaf local community members, students, and teachers; ranging in age (adolescents to seniors), geographic location within the United States, and socio-economic and ethnic backgrounds. Informal settings such as local community, resource and cultural centers will participate in project dissemination efforts and activities. Formal settings such as postsecondary linguistics courses, deaf studies courses, interpreter training courses, and professional workshops will also serve as secondary venues for project dissemination activities. The research design, videotaped data clips and findings from the seminal sociolinguistic research involving data from 22 study groups at six different sites will be encapsulated and made accessible via the primary deliverable, a 2 hour DVD. Designed for various audiences, the DVD will present the socio-historical significance of the research, data collection and methods employed, and data clips of participants narrating their life experiences. Phonological variables, syntactic & discourse variables, contact phenomena, and lexical variations will also be discussed and illustrated in the DVD. Targeted public and professional audiences will be recruited to receive the DVD, the companion guide book, and other project resources. Project deliverables include a 2 hour DVD, training materials, workshops, and web site enhancements. Through active dissemination efforts, the project intends to reach approximately 29,000 people. The project should: (a) increase knowledge and awareness about the scientific structure and history of ASL, and (b) provide greater access to content- including STEM content-through a broader understanding of geographical and social factors that influence non-spoken language variations, particularly Black ASL. A mixed methods evaluation study will be employed to monitor all aspects of the DVD and training materials development, refinement, and implementation. Focus groups will be conducted and questionnaires will be distributed to collect data and determine the extent to which the project has effectively met its primary goal to share and disseminate its research findings more broadly to public audiences, with a special emphasis on informal audiences and organizations. The project will address a need in the field for research about the scientific structure, history, and socio-cultural factors influencing variations in non-spoken languages, particularly in Black ASL. Broad dissemination of this research could raise public awareness about ASL variations thereby, providing interpreters and a sizable portion of the deaf and hearing communities with valuable insights on ASL that could improve content accessibility among deaf and hearing impaired individuals. The project also highlights an important, overlooked component of American history. In addition, this project would further the ISE program's efforts to diversify its portfolio with respect to content (science of language; linguistics) and target populations (deaf, African-American). The original NSF funded scientific research project and the proposed dissemination efforts, also support ISE's commitment to fund projects with an aim to communicate NSF funded research to informal audiences and within informal settings. With an anticipated reach of 29,000 people, the project?s website, local community events, and linkages with ISE organizations such as The Department of African American Studies Afro-American Studies Resource Center at Howard University in Washington, DC; The Stiles African American Heritage Center in Denver; and The Schomburg Center for Research in Black Culture in Harlem, NY and professional organizations such as the Gallaudet University Press and the National Association of Black Deaf Advocates (NBDA); will provide multiple opportunities for public engagement in the research and cross-disciplinary, cultural discussions about this work within the context of informal and formal education.
This multimedia project tells the human story of the long, continuing quest to identify, understand, and organize the basic building blocks of matter leading to the Periodic Table of Elements. Project deliverables include a two hour PBS documentary; a website on the Periodic Table and discovery of the elements; a Teacher\'s Guide; and an Outreach Plan led by the St. Louis Science Center and nine other science centers. The target audiences are adults with an interest in science, inner-city youth, and high school chemistry teachers and their students. Partners include Moreno/Lyons Productions, the American Chemical Society (ACS), the Chemical Heritage Foundation; the St. Louis Science Center; and Oregon Public Broadcasting. The national broadcast and outreach activities are intended to complement the International Year of Chemistry (IYC) 2011, furthering the opportunity to enhance the public understanding of chemistry. The goal of the project is to reveal science as an intensely human process of discovery through stories of some of the greatest scientists. The two-hour PBS special will tell a "detective story" of chemistry, stretching from the ancient alchemists to today's efforts to find stable new forms of matter. Among key characters will be Joseph Priestley, Antoine Lavoisier, Humphry Davy, Dmitrii Mendeleev, Marie Curie, Harry Moseley, and Glenn Seaborg. The program will show both their discoveries and the creative process, using reenactments shot with working replicas of their original lab equipment. Interwoven with history will be segments on modern chemical research and the real-world consequences of the discoveries. A two-part Outreach Plan is aimed at engaging inner-city youths through a network of ten science centers led by the St. Louis Science Center and at reaching a broader audience through events, activities, and publications offered by ACS during National Chemistry Week and IYC 2011. The television program is projected to reach three million viewers during its multiple broadcasts over premiere week, increasing to five million or more with subsequent repeat broadcasts and DVD distribution. It is estimated that 6,500 underrepresented urban teens will participate in the hands-on activities in the ten science centers during IYC 2011. The website is intended to become a resource extending the reach and impact of the project for a decade or more. The summative evaluation will assess the extent to which the project accomplishes the goals of enhancing public understanding of chemistry, affecting public attitudes toward chemistry and chemists, and improving the understanding of the nature of science. Three studies will be conducted. The first will be an in-depth evaluation of the program and Web site with a sample of 150 adult PBS viewers using a two-group post-test randomized study design. The second study will evaluate the outreach effort with diverse audiences at the local level prior to and during National Chemistry Week using on site observations, surveys, and interviews to capture participant feedback at local events. The third study will evaluate high school educators' use of the Teacher's Edition & Guide.