IDSolutions, in partnership with the National Association of Health Education Centers (NAHEC) and eight NAHEC member organizations will develop an original project to provide informal science education experiences to children, families and the local community via visual communications' technology. This initiative includes building a technical infrastructure that will connect participating Health Education Centers. It will expand beyond the installation of a network and will focus the bulk of its energy on the technology's application -- generating inquiry-based science experiences through active engagement with content that originates from remote locations. Through the creation of an Interactive Videoconferencing Programming Collaborative (IVPC), IDSolutions, NAHEC, and NAHEC Members will produce and disseminate to our target audience of school-age children, families, community groups and teachers, a high volume of science-related programming. The core content of the initial set of programs will be extracted from one of the nation's most popular life science traveling exhibits called "Grossology." These distance-learning programs will originate from a central "studio" location and will be available during the day, after school, on weekends, during summer breaks and holidays. Supporting this effort will be Advanced Animations (designers of "Grossology" and "Experience Science!"), a science education consulting company.
The proposed conference will bring together leading national and international researchers and practitioners from developmental and cognitive psychology, game design, and media to examine how learning transfers from video game play to formal and informal learning. The conference will convene in New York City and serve to lay the foundation for an interdisciplinary New York-based community of researchers and practitioners interested in examining the implications of video game play on learning. Invited participants will address cognitive skills and content knowledge that children and adolescents acquire and refine during video game play; game features that captivate and promote skills development among game players; and evidence of skill and content knowledge transfer from video game play to informal and formal learning. Discussion of these issues will culminate in specification of the most appropriate research agenda to investigate the academic potential of video game play, particularly using those games that children and adolescent players find most compelling. An edited book will be published of the conference proceedings. The audience for this book will be academics, educators, game designers, media professionals, and policymakers interested in understanding the potential of video game learning for formal and informal instruction based on the most current research and practice.
Lawrence Berkeley Labs developed a CD containing educational materials, staff training and the software necessary for informal science education centers to offer to middle school students one- hour sessions, multiple-day workshops, and ongoing participation in a drop-in computer lab. Hands-On Universe (HOU) is an active science education program that provides participants access to observing time on professional telescopes through the use of a personal computer and the Internet. The CD contains: exploration experiences and challenge games; resource material including images from other national labs, descriptions and animations of related topics, and astronomical catalogs; image processing software; a telecommunications package to interface with HOU telescopes and support network, the Internet, and World Wide Web; staff training material. The target audiences are youth in grades three through high school, and adults.
MarsQuest Online is an exploration-based website designed to complement the innovative MarsQuest traveling exhibit launched by the Space Science Institute (SSI) in 1997. "MarsQuest Online" will enhance and extend the exhibit, which is currently on a six-year, 18-city tour. TERC, working in collaboration with the Space Science Institute and NASA's Jet Propulsion Laboratory (JPL), will create a virtual version of the exhibit using software such as Java, Quicktime VR and JPL's sophisticated MarsNet Viewer system. Users will be immersed in an integrated, interactive environment complete with the tools and resources to carry out investigations and enhance inquiry-based learning. "MarsQuest" will expand users' understanding of the history of Mars, scientific exploration, the climate and related earth science concepts, while enabling them to follow the exploration of various landers and orbiters, and access NASA scientists. A diverse collection of Guided Inquiry experiences will foster the ability of users to develop inquiry and analysis skills, while offering options for novice, intermediate and advanced learners. Finally, a comprehensive evaluation plan will examine how the website and exhibit compare in promoting the understanding of science, broadening public interest in space exploration, and motivating further learning. The site will be promoted for use by schools as a tool for teaching earth science and space exploration. It is estimated that 300,000 people will visit "MarsQuest Online" annually.
DATE:
-
TEAM MEMBERS:
Daniel BarstowPaul DusenberyPaul AndresChris Randall
This proposal requests partial funding for the development of a new paleobiology hall at the University of Nebraska State Museum. This project will give students and the general public a dynamic view of the period of time known as the Age of Reptiles. It emphasizes experience with interactive exhibits that focus on concepts of geologic time, how species adapt and change, relative size, scale and time, the activities of scientists as role models, and it provides reinforcement of these experiences for students in the classroom. This project includes the first use in a museum of SemNet, a software program designed for concept mapping and the representation of knowledge networks, which will be used with a videodisc. Prototypes of all interactive exhibits will undergo formative evaluation to establish maximal audience accessibility, ease of use and educational effectiveness. The exhibit concepts will be disseminated throughout the state of Nebraska through mini- versions, teachers in-service training, and scientist-in- residence programs. This project will also be used as a teaching laboratory for the University of Nebraska's graduate program in Museum Studies.
This project will develop a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the discoveries from this scientific discipline. The Space Science Institute will capitalize on its prior successes and the success of other education programs to develop a comprehensive and integrated program that has the following five components: (1) the Space Weather Center website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. Partners include UC Berkeley's Space Sciences Laboratory; the American Library Association; Macerich: a mall developer with nationwide impact; and the Math, Engineering, Science Achievement program. The project brings together a creative collaboration between exhibit designers, graphic artists, formal/informal educators, and research scientists. The project spans a full spectrum of science communication strategies (formal, informal, and public outreach). The evaluation part of the project will examine how well the project elements work together and a pilot research study will explore the efficacy of online digital games for communicating complex space weather content. Results will be published and the findings presented at professional meetings and online. The three-year project is expected to impact well over two million people, including exhibit and website visitors and outreach visitors at various venues such as libraries and malls.
This Phase I SEPA proposal supports a consortium of science and education partners that will develop System Dynamics (SD) computer models to illustrate basic health science concepts. The consortium includes Oregon Health Sciences University (OHSU), Portland Public Schools (PPS), Saturday Academy, and the Portland VA Medical Center. SD is a computer modeling technique in which diagrams illustrate system structure and simulations illustrate system behavior. Desktop computers and commercial software packages allow SD to be applied with considerable success in K-12 education. NSF grants to Portland Public Schools have trained over 225 high school teachers in Portland and surrounding areas. Two magnet programs have been established with an emphasis on systems and at least five other schools offer significant systems curriculum. Major components of this project include (1) Annual summer research internships at OHSU for high school teachers and high school students, (2) Development of SD models relevant to each research project, (3) Ongoing interactions between high school science programs and OHSU research laboratories, (4) Development of curriculum materials to augment the use of the SD model in the high school classroom or laboratory setting, and (5) Development of video materials to support the classroom teacher. Content will focus on four fundamental models: linear input/exponential output, bi-molecular binding (association/dissociation), population dynamics, and homeostasis. Each of these models is very rich and may be extended to a broad variety of research problems. In addition these models may be combined, for example to illustrate the effect of drugs (binding model) on blood pressure (homeostasis model). System Dynamics is an exemplary tool for the development of materials consistent with National Science Education Standards. SD was specifically developed to emphasize interactions among system structure, organization, and behavior. Students use these material as part of inquiry-based science programs in which the teacher serves as a guide and facilitator rather than the primary source of all content information; technical writing by students is also encouraged. Finally, these SD materials will provide a coherent body of work to guide the ongoing professional development of the classroom science teacher.
We will develop two CD-ROM based interactive multimedia resources for middle school students, based on print modules from Stanford's Middle Grades Life Science Education Curriculum project, which is funded by the national Science Foundation and Carnegie Corporation of New York. One multimedia title will cover the cardio-respiratory systems, linking the biology of the heart and lung to disease risk and prevention. The other will focus on genetics, cellular, and developmental biology, with applications to human gene therapy and genetic engineering. These new multimedia science education resources will extend the work supported by the U.S. Public Health Service through Stanford's SEPA grant to develop an innovative and highly interactive multimedia resource on athe Nervous System and the Effects of Drugs and Alcohol. Faculty, staff, and science education graduate students in Stanford's Program in Human Biology and School of Education, along with local middle and high school science teacher consultants, will continue to work in partnership with Volotta Interactive Video, a multimedia design and production company in Larkspur, California. Many of the structural design elements created for the first multimedia resource will be used to develop the next titles. These design features will provide a consistency in the human biology multimedia titles, which will make it easier for students and for teachers to use, once they have gained experience with one resource. It also will help lower the development costs for the subsequent titles.
MEDMYST: Dissemination Phase II A Phase I grant, The Reconstructors Investigate Medical Mysteries, from the National Center for Research Resources (R25 RR15295) funded the creation and field-test of innovative web-based materials targeted for middle school students. The product has come to be known as MEDMYST.It is an episodic adventure series with accompanying classroom activities focusing on infectious diseases and the microbes that cause them. The MEDMYST materials consist of: a) web adventures; b) classroom activities; c) MEDMYST Magazine--all designed to engage students in problem-solving activities not likely to be encountered elsewhere. Each of these components is available free of charge on the web site (http://medmyst.rice.edu) and all components are aligned with the National Science Education Content Standards. An extensive field test involving over 700 students from 9 different schools tested the efficacy of these materials. The results, accepted for publication in American Society for Microbiology's Microbiology Education journal, indicated significant learning gains with exposure to the Internet component of the materials. In this Phase II application, the goals are: 1) To create a network of MEDMYST Dissemination Partners and Lead Teachers whose expertise and training will continue beyond the SEPA funding. 2) To amplify teaching of Infectious Disease related concepts though MEDMYST in middle school classrooms by training a minimum of 1200 teachers, who will teach approximately 150,000 students over a two-year period. 3) To evaluate the impact of MEDMYST teacher training and document the adoption process in classrooms. 4) To continue to promote MEDMYST in a variety of educational settings, such as homes, after-school programs, museums, and with links from other web sites. To accomplish these goals, we have formed partnerships with the University of Washington Educational Outreach, The Minnesota Science Museum, the John P. McGovern Museum of Health ad Medical Science, and the American Society for Microbiology.
We propose to leverage the power of the Internet and the appeal of on-line gaming environments for middle school students to create a new type of learning resource in science. Case histories of medical discovery will be transformed into "problem- based" multimedia mysteries for students to solve. Through prior research we have developed and field tested a working model for an adventure series that engages middle school students. We propose to extend the model to new content. Assuming the on-line role of a Reconstructor who seeks lost medical knowledge from the past, students will unravel the origins of specific diseases or medical discoveries. The learning objectives for each episode will be multidisciplinary. The goal is to engage students in constructing their own knowledge by participating in virtual experiments, by helping them establish a context for the discoveries, and by understanding issues involved in forming public health policy. An experienced team representing medicine, biology, history of science, education, and information technology will oversee the project, assuring the integrity of the site content, and incorporating cutting edge technology. A process of iterative prototyping, focusing heavily on teachers and students will be employed to make the resource site exciting, educational, and useful in classrooms, in homes, and in museums. The field tests will be conducted in schools, representing a cross-section of the community, assuring appropriate presentation of materials to target populations.
1. Build stepwise a prototype -Virtual Clinical Research Center- (VCRC) for K-12 learners and mentors (diverse peers, experts, and patients) by accessing, mobilizing, and linking the human and physical resources of a prototype national network of Clinical Research Centers (CRC) and translational laboratories through state-of-the-art Telemedicine communication and collaborative technologies and featuring T3 or the 3Ts - Teams, Technologies, Translation - of the Clinical Research Enterprise); 2. Develop the Medical Ignorance Exploratorium (MIEx) as a hybrid K-12 cybercafe-health science museum with key features of a) navigable, game-like, 3D environment including -Isles of Medical Ignorance- and -Questionator,- b) Resource Library, c) Live Performance Theater; and d) Collaboration Space, all to stimulate and guide student-centered inquiry about medical breakthroughs, clinical topics, and sick patients (featuring cyber Q3 or the 3Qs-Questions, Questioning, and Questioners); 3. Evaluate the impact and effectiveness of the curricular and delivery resources and models in SA1 and 2 as well as the dissemination in SA4; 4. Disseminate, embed, and expand the refined Virtual CRC and Medical Ignorance Exploratorium in K-12 schools, the clinical research community, and beyond.
DATE:
-
TEAM MEMBERS:
Marlys WitteGrace WagnerMichael Bernas
Field trips to science museums can provide students with educational experiences, particularly when museum programs emphasize scientific inquiry skill building over content knowledge acquisition. We describe the creation and study of 2 programs designed to significantly enhance students' inquiry skills at any interactive science museum exhibit without the need for advanced preparation by teachers or chaperones. The programs, called Inquiry Games, utilized educational principles from the learning sciences and from visitor studies of museum field trips. A randomized experimental design compared