Skip to main content

Community Repository Search Results

resource evaluation Public Programs
This report summarizes the evaluation results from the NSF funded Eight-Legged Encounters family event that uses arachnids as a hook to draw public interests towards science. The event involves informative and hands-on activities that bridge the gap between academia and the public, extending knowledge about arachnids to children and their parents. The Bureau of Sociological Research (BOSR) at UNL was contracted to evaluate Eight-Legged Encounters. The data collection for this report involves five events and three audiences: adults, children, and the volunteers of the event. Two events were
DATE:
TEAM MEMBERS: University of Nebraska Lincoln Eileen Hebets
resource research Public Programs
This report provides background information about the Flathead Watershed, the people responsible for funding the project and an depth description of Phase I, the Delphi Survey. The report includes participant information, methodology, data acquisition and findings.
DATE:
TEAM MEMBERS: Montana State University Kimberly Yates
resource research Media and Technology
This NSF Special Report highlights broader impacts. Scientific progress comes in all shapes and sizes. Researchers peer at the microscopic gears of genomes, scan the heavens for clues of our origins. They unearth wind-weathered fossils, labor over complex circuitry, guide students through the maze of learning. Disparate fields, researchers and methods united by one thing: potential. Every NSF grant has the potential to not only advance knowledge, but benefit society -- what we call broader impacts. Just like the kaleidoscopic nature of science, broader impacts come in many forms. No matter the
DATE:
TEAM MEMBERS: National Science Foundation
resource research Media and Technology
Researchers have now acquired so much information about how the brain learns that a new academic discipline has been born, called “educational neuroscience” or “mind, brain, and education science.” This field explores how research findings from neuroscience, education, and psychology can inform our understandings about teaching and learning, and whether they have implications for educational practice. This interdisciplinary approach ensures that recommendations for applying these findings to instructional practices have a foundation in solid scientific research. It also ensures that teachers
DATE:
TEAM MEMBERS: David Sousa
resource research Media and Technology
In this interview, author and professor R. Keith Sawyer describes the importance of and interconnections among creativity, collaboration, and the science of learning. He explains that the older paradigm of schooling from 50 years ago where rote learning was predominant is no longer relevant in a knowledge-based society. We now have to prepare students for jobs that require adaptability, flexibility, and creativity. He endorses an approach to education that fosters a deeper conceptual understanding, especially through collaborative creativity. He maintains that true innovation usually comes
DATE:
TEAM MEMBERS: Keith Sawyer
resource research Media and Technology
Recent advances in neuroscience are highlighting connections between emotion, social functioning, and decision making that have the potential to revolutionize our understanding of the role of affect in education. In particular, the neurobiological evidence suggests that the aspects of cognition that we recruit most heavily in schools, namely learning, attention, memory, decision making, and social functioning, are both profoundly affected by and subsumed within the processes of emotion; we call these aspects emotional thought. Moreover, the evidence from brain-damaged patients suggests the
DATE:
TEAM MEMBERS: Mary Helen Immordino-Yang Antonio Damasio
resource research Media and Technology
This report highlights advances in neuroscience with potential implications for education and lifelong learning. The report authors, including neuroscientists, cognitive psychologists and education specialists, agree that if applied properly, the impacts of neuroscience could be highly beneficial in schools and beyond. The report argues that our growing understanding of how we learn should play a much greater role in education policy and should also feature in teacher training. The report also discusses the challenges and limitations of applying neuroscience in the classroom and in learning
DATE:
TEAM MEMBERS: The Royal Society Uta Frith
resource research Media and Technology
In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.
DATE:
TEAM MEMBERS: Anthony Kelly
resource research Media and Technology
This is a handout from a session presented at the 2008 ASTC Conference. Advances in neuroscience are revealing biological pathways underlying emotion, attention, and memory. How can this research be integrated with educational pedagogy to enhance free-choice learning? Join experts from neuroscience, education, and museums to explore practical ways in which new insights about the brain can be applied to creating museum experiences.
DATE:
TEAM MEMBERS: Jayatri Das
resource research Media and Technology
This report from the National Research Council explores how learning changes the physical structure of the brain, how existing knowledge affects what people notice and how they learn, the amazing learning potential of infants, and the relationship between classroom learning and learning in everyday settings such as community and the workplace. It identifies learning needs and opportunities for teachers and provides a realistic look at the role of technology in education.
DATE:
TEAM MEMBERS: National Research Council
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will further develop, roll out, and conduct research on a set of materials that will introduce middle school age youth to innovative and engaging engineering challenges in the Boys and Girls Club (B&GCs) context. Building on substantial prior work and evaluation-based learning, WISE Guys and Gals - Boys & Girls as WISEngineering STEM Learners (WGG) will: (1) combine engineering design activities with the (open source, online) WISEngineering infrastructure; (2) scale-up the infrastructure; (3) engage youth in informal afterschool experiences; and (4) collect a wealth of rich data to further our understanding of how youth learn through these experiences. This work will be conducted by Hofstra University's Center for STEM Research in conjunction with Brookhaven National Laboratory (BNL), The CUNY Graduate Center's Center for Advanced Study in Education (CASE), the Boys & Girls Club of America, and 25 B&GCs in New York and New Jersey. The underlying theoretical framework builds on proof-of-concept work supported by NSF and the Bill and Melinda Gates Foundation. An open source, on-line interface (WISEngineering) provides numerous virtual tools (e.g., social networking, Design Journal, embedded assessments) that promote learning and collaboration through challenging, thoughtful, and creative work. WGG will explore how to incorporate creativity, social networking, connections to real-world STEM needs/careers, and teamwork into challenges that can be completed in a one-hour period, an activity time constraint in many B&GC settings. Staff from the clubs will participate in face-to-face and virtual professional development in an effort to build their capacity as facilitators of STEM learning. Research will focus on: (1) how activities developed for 60-minute implementation and guided by informed engineering design and interconnected learning frameworks support youth learning and engagement; and (2) characteristics of the professional development approach that support B&GC facilitators' capacity development. By the end of the project, over 6,000 middle school aged youth, the majority from groups underrepresented in STEM areas, will gain experience with engineering design as they develop engineering thinking, new STEM competencies, STEM career awareness, and an appreciation for the civic value of STEM knowledge.
DATE: -
TEAM MEMBERS: David Burghardt Xiang Fu Kenneth White Melissa Rhodes
resource project Public Programs
For over 60 years annual Science Fairs and Engineering competitions have been held in schools and communities throughout the country, engaging large numbers of middle school students and culminating in national and international events. Science fairs are at the intersection of formal learning in school and informal science learning in other settings including science centers, after-school programs, and clubs. However, in spite of their wide implementation and long history, there are few empirical studies that have examined the relationship between student participation in these fairs and their learning and interest in science. Additionally, there have been no studies to understand the real cost of these programs relative to the student benefits. This educational research project will fill that gap in understanding. It will systematically document and describe science fair models; measure their impact on learning; and provide evidence about the costs of various models and related benefits. The findings from this study will inform a wide range of stakeholders (including teachers, science fair leaders, volunteers, parents, and businesses) about these models and how they impact students' mastery of science and engineering practices. This four-year study in all regions of the country will be conducted in two phases: Phase 1 will be a survey of 3800 middle school science teachers will define the characteristics of science fair models; Phase 2 will use those understandings to conduct case studies in 20 schools. Deliverables include handbooks for teachers and the science fair community, articles in journals summarizing findings, the Science and Engineering Practice and Interest Inventory, and a suite of data collection instruments for scoring rubrics to describe science fairs and measure their impact. Research questions will include: (1) What are the basic models of middle school science fairs? (2) To what extent does participation in a particular model enhance students' mastery of science and engineering practices and/or their interest in science? (3) What student-teacher and school-level factors contribute to or inhibit students' mastery? (4) What resources, human and financial, are required to implement an effective middle school science fair? and (5) What are the most cost-effective aspects of the science fair experience, and how can they be applied or adapted by science fair leaders and teachers to strengthen students' mastery of science and engineering practices? Findings from this study will have the potential to improve current practices in the design and implementation of science fairs and their impact on student learning; they will be widely disseminated to the various stakeholders through publications, conference presentations, and educational association channels.
DATE: -
TEAM MEMBERS: Abigail Levy Marian Pasquale Jacqueline DeLisi Tracy McMahon Leana Nordstrom Janna Kook Erica Fields Lukas Winfield