Skip to main content

Community Repository Search Results

resource project Media and Technology
This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a mobile app to guide families through sequenced sets of videos and hands-on activities, building on the popular PBS KIDS series Work It Out Wombats!
DATE: -
TEAM MEMBERS: Marisa Wolsky Janna Kook Jessica Andrews
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource research Informal/Formal Connections
Overlaying Computer Science (CS) courses on top of inequitable schooling systems will not move us toward “CS for All.” This paper prioritizes the perspectives of minoritized students enrolled in high school CS classrooms across a large, urban school district in the Western United States, to help inform how CS can truly be for all.
DATE:
TEAM MEMBERS: Jean Ryoo Tiera Tanksley Cynthia Estrada Jane Margolis
resource project Media and Technology
This award takes an innovative approach to an ongoing, pervasive, and persistent societal issue: women are still drastically underrepresented in computing careers. This project targets middle school-aged girls because it is a time when many of them lose interest and confidence in pursuing technical education and computing careers. This project will design, develop, and deploy a one-week experience focused on middle school girls that targets this issue with a novel combination of teaching techniques and technology. The project will use wearable computing devices to support girls' social interactions as they learn computing and solve technical challenges together. The goals of the project are to raise interest, perceived competence, and involvement in the computational ability of girls. Additionally, the project aims to increase a sense of computational community for girls that makes pursuing computational skills more relevant to their identities and lives, and that helps continued participation in computing. The project will deploy a one-week experience four times per year with a socioeconomically diverse range of campers. The project will also develop a 'program in a box' kit that can be broadly used by others wishing to deliver a similar experience for girls.

The planned research will determine if a one-week experience that uses social wearable construction in the context of live-action role play can use the mediating process of computational community formation to positively impact middle school girls' engagement with and interest in computation. Computational community is defined as girls engaging together in the process of learning computation, trading resources and knowledge, and supporting growth. Research participants will include 100 6th to 9th-grade girls. At least 75% of the participants will be either low income, first-generation college-bound, or underrepresented in higher education. Students will be recruited through the longstanding partnerships with title one schools in the Salinas Valley, the Educational Partnership Center, and in the Pajaro Valley Unified School district, where 82% of the students are Hispanic/Latinx, 42% are English Learners, and 73% are eligible for free or reduced lunch. The research questions are: 1) Does the proposed experience increase girls' self-reported competence, self-efficacy, and interest in computational skills and careers? and 2) Will the proposed experience lead to activity-based evidence of learning and integration of computational skills at the group social level? The project will use a mixed-methods, design-based research approach which is an iterative design process to rapidly collect and analyze data, and regularly discuss the implications for practice with the design team. Data will be collected using observations, interviews, focus groups, surveys, and staff logs. Quantitative data will be analyzed using frequencies, means, and measures of dispersion will be applied to survey data from both time points. Pearson correlation coefficients will be used to describe the bivariate relationship between continuous factors. ANOVAs will assess whether there are significant differences in continuous measures across groups. Qualitative data will be analyzed using a constant comparison method.

This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Katherine Isbister
resource project Public Programs
Many people with autism are unemployed and isolated because they do not have access to educational opportunities that support them in finding jobs that match their potential. This research seeks to empower adolescents with autism to seek out careers that are well-matched with their strengths and interests. Many people with autism are interested in computing, a marketable skill. This project builds from this interest by developing strategies to effectively engage teenagers with autism. Although people with autism share a diagnosis, each person is unique and has the capacity to become a visionary and transformer in society in their own way. Teenagers with autism will be invited to participate in a game design workshop hosted by an award-winning, not-for-profit Tech Kids Unlimited. Teenagers often enjoy learning how to design games and can learn many useful skills through design. During each workshop, teenagers will rate different teaching strategies using a picture-based survey developed in collaboration with people with autism. It is expected that teenagers with autism who have difficulty focusing to be most engaged by strategies that include multiple types of information (for example, pictures, text, and speech). The team also expects those who are more focused to be most engaged by strategies with fewer sources of information. By developing clear guidelines to help educators match their teaching styles to how different students learn, the project will help them engage youth more effectively. Through an iterative process, the team will revise the game design workshop to make it more engaging for people with different types of autism. New groups of teenagers with autism will participate in improved game design workshops that include an internship in a technology company. An important outcome is to understand which strategies are engaging for young people with autism that help them develop the belief in their skills needed to seek out fulfilling careers. This award is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This Research in Service to Practice project has the following aims: 1) Identify evidence-based strategies to engage youth with autism spectrum disorder (ASD) in informal STEM learning opportunities that are well matched to their attentional profiles, 2) Determine if engaging youth with ASD in informal STEM learning opportunities increases their STEM self-efficacy, and 3) Determine if engagement with STEM internship activities is associated with increased interest in STEM careers and career decision-making self-efficacy. Principles of Universal Design (UD) and Mayer's principles of effective multimedia instruction are frameworks employed to identify instructional strategies that are emotionally engaging for youth with diverse attentional profiles. The degree to which attentional differences contribute to different patterns of emotional engagement with informal STEM learning will be investigated. Guided by assessments of youth's engagement with different learning opportunities, 'diversity blueprints' or specific instructional strategies that help youth with diverse attentional profiles engage will be developed. After identifying strategies to engage neurodivergent (neurologically diverse) youth in informal STEM learning opportunities, the extent to which these strategies generalize to STEM internship sites will be explored. The team will study potential specificity of the types of contexts that promote different types of self-efficacy, with engagement with extracurricular STEM learning opportunities expected to preferentially target STEM self-efficacy while engagement with internships targets career decision-making self-efficacy. Although UD is often endorsed to promote STEM learning among students with disabilities, the proposed research would be the first iterative adaptation of instructional strategies designed to engage neurodivergent teens in informal STEM learning guided by a systematic analysis of how they engage with and feel about instructional strategies. Project deliverables include workshops for local after-school program providers, publications, a project website, and a multimodal guide of the process of developing 'diversity blueprints' and how to apply them for informal STEM educators and researchers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Hurst Katie Gillespie
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

Making, which supports interest-driven skill-development and learning, has been recognized as having the potential to engage underserved youth in STEM. Makerspaces are community spaces that allow participants to create items using tools, such as 3-D printers, computer-aided design, and digital fabrication technologies. Makerspaces and making-related programs are often inaccessible, unaffordable, or simply not available to underserved youth. Digital Harbor will partner with recreation centers, two in Pittsburgh and two in Baltimore, to research, refine and implement an equity-based approach to making that will engage underserved youth aged 12-16 in making. The project will prepare out-of-school time (OST) educators to collaboratively develop culturally sensitive curricula with underserved youth to engage them in maker-based technology and computer science experiences. The project will (1) design a professional development program that will prepare and support local educators to collaboratively design and deliver localized, maker-based, STEM curricula; (2) research the impact of these programs on both educators' and youth's self-efficacy, creativity, and attitudes towards STEM; and (3) develop and evaluate an online Localization Toolkit that will prepare educators in makerspaces across the nation in using an equity-based approach to create localized content. The project will result in four new maker sites (two in Baltimore and two in Pittsburgh directly impact 4 sites (10 educators and 240 youth). The project will result several resources that will support the development and educational programs of other community sites. The resources will include the Localization Toolkit, Case Studies, Best Practices, and Research Study. The Localization Toolkit has the potential to strengthen infrastructure and capacity building in OST maker-based programs, as well as other informal and formal education programs using similar pedagogies and design principles.

The project will use a mixed-methods approach in researching the challenges and processes involved in establishing the four maker sites in Baltimore and Pittsburgh, the approaches and effectiveness of the professional development program on OST educators, and the impacts of the project of participation on the self-efficacy, creativity, and attitudes on participating youth and educators. The research study will apply several instruments and data collection sources to develop quantitative data, including youth attendance logs, the Upper Elementary and Middle/High School Student Attitudes toward STEM survey, a retrospective technology self-efficacy survey and pre-post surveys. In addition to project document review, the researchers will collect qualitative data through educator interviews, educator focus groups, and youth focus groups. Project research and resources will reach key audiences of learning scientists and OST educators through articles in peer-reviewed and practitioner journals, public events and professional conferences. These audiences will also be reached through the project website, which will share project resources. The project will reach OST sites across the country directly through dissemination partners, including the National Recreation and Parks Association, Association of Science and Technology Centers, and statewide out-of-school networks.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Foad Hamidi Andrew Coy
resource research Exhibitions
The data collection procedure and process is one of the most critical components in a research study that affects the findings. Problems in data collection may directly influence the findings, and consequently, may lead to questionable inferences. Despite the challenges in data collection, this study provides insights for STEM education researchers and practitioners on effective data collection, in order to ensure that the data is useful for answering questions posed by research. Our engineering education research study was a part of a three-year, NSF funded project implemented in the Midwest
DATE:
TEAM MEMBERS: Ibrahim Yeter Anastasia Marie Rynearson Hoda Ehsan Annwesa Dasgupta Barbara Fagundes Muhsin Meneske Monica Cardella
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource project Public Programs
Research that seeks to understand classroom interactions often relies on video recordings of classrooms so that researchers can document and analyze what teachers and students are doing in the learning environment. When studies are large scale, this analysis is challenging in part because it is time-consuming to review and code large quantities of video. For example, hundreds of hours of videotaped interaction between students working in an after-school program for advancing computational thinking and engineering learning for Latino/a students. This project is exploring the use of computer-assisted methods for video analysis to support manual coding by researchers. The project is adapting procedures used for computer-aided diagnosis systems for medical systems. The computer-assisted process creates summaries that can then be used by researchers to identify critical events and to describe patterns of activities in the classroom such as students talking to each other or writing during a small group project. Creating the summaries requires analyzing video for facial recognition, motion, color and object identification. The project will investigate what parts of student participation and teaching can be analyzed using computer-assisted video analysis. This project is supported by NSF's EHR Core Research (ECR) program, the STEM+C program and the AISL program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. The project is funded by the STEM+Computing program, which seeks to address emerging challenges in computational STEM areas through the applied integration of computational thinking and computing activities within disciplinary STEM teaching and learning in early childhood education through high school (preK-12). As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The video analysis systems will provide video summarizations for specific activities which will allow researchers to use these results to quantify student participation and document teaching practices that support student learning. This will support the analysis of large volumes of video data that are often time-consuming to analyze. The video analysis system will identify objects in the scene and then use measures of distances between objects and other tracking methods to code different activities (e.g., typing, talking, interaction between the student and a facilitator). The two groups of research questions are as follows. (1) How can human review of digital videos benefit from computer-assisted video analysis methods? Which aspects of video summarization (e.g., detected activities) can help reduce the time it takes to review the videos? Beyond audio analytics, what types of future research in video summarization can help reduce the time that it takes to review videos? (2) How can we quantify student participation using computer-assisted video analysis methods? What aspects of student participation can be accurately measures by computer-assisted video analysis methods? The video to be used for this study is drawn from a project focused on engineering and computational thinking learning for Latino/a students in an after-school setting. Hundreds of hours of video are available to be reviewed and analyzed to design and refine the system. The resulting coding will also help document patterns of engagement in the learning environment.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Marios Pattichis Sylvia Celedon-Pattichis Carlos LopezLeiva
resource project Media and Technology
Robots and robotics excite and challenge youths and adults. Unfortunately, the cost of purchasing robots or building useful robots is prohibitive for many low resource individuals and groups. This project will relieve this expense and provide an opportunity for resource limited individuals to experience the thrilling aspects of robotics by building a computer game that simulates robotic action. This project uses co-robotics wherein the participating player programs an avatar to assist in a symbiotic manner to achieve the goals of the game and participant. The game will provide access to the ideas and concepts such as programing, computational thinking and role assumption. The overarching goals are (1) to engage low-resource learners in STEM education through robotics in out-of-school spaces, and (2) to update the field of robotics-base STEM education to integrate the co-robotics paradigm.

This project is designed to gain knowledge on how co-robotics can be used in the informal education sector to facilitate the integration of computational science with STEM topics and to expand the educational use of co-robotics. Because the concept of co-robotics is new, a designed-based research approach will be used to build theoretical knowledge and knowledge of effective interventions for helping participants learn programing and computational thinking. Data will be collected from several sources including surveys, self-reports, in game surveys, pre and post-tests. These data collection efforts will address the following areas: Technology reliability, Resolution of cognitive tension around co-play, Accelerate discovery and initial engagement, Foster role-taking and interdependence with co-robots, Investigate social learning, and Validate measures using item response theory analysis. The DBR study questions are:

1.What design principles support the development of P3Gs that can effectively attract initial engagement in a free-choice OST space that offers large numbers of competing options? 2.What design principles support a P3G gameplay loop that enables learning of complex skills, computational thinking and co-robotics norms, and building of individual and career interest over the course of repeated engagement?

3.What design principles support P3Gs in attaining a high rate of re-engagement within low-resource OST settings? 4.What kinds of positive impact can P3Gs have on their proximal and distal environment? In addition, the project will research these questions about design: 1.What technical and game design features are needed to accommodate technological interruption? 2.What design elements or principles mitigate competition for cognitive resources between real-time play and understanding the co-robotic's behavior in relation to the code the player wrote for it? 3.What design elements are effective at getting learners in OST settings to notice and start playing the game? 4.What designs are effective at encouraging learners to engage with challenging content, particularly the transition from manual play to co-play? 5.What design elements help players develop a stake in the role the game offers? 6.What social behaviors emerge organically around a P3G prototype that is not designed to evoke specific social interactions?

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Ross Higashi
resource project Media and Technology
Women continue to be underrepresented in computer science professions. In 2015, while 57% of professional occupations in the U.S. were held by women, only 25% of computing occupations were held by women. Furthermore, the share of computer science degrees going to women is smaller than any STEM field, even though technology careers are the most promising in terms of salaries and future growth. Research suggests that issues contributing to this lack of computer science participation begin early and involve complex social and environmental factors, including girls' perception that they do not belong in computer science classes or careers. Computer science instruction often alienates girls with irrelevant curriculum; non-collaborative pedagogies; a lack of opportunities to take risks or make mistakes; and a heavy reliance on lecture instead of hands-on, project-based learning. Computer science experiences that employ research-based gender equitable best practices, particularly role modeling, can help diminish the gender gap in participation. In response to this challenge, Twin Cities PBS (TPT), the National Girls Collaborative (NGC) and Code.org will lead Code: SciGirls! Media for Engaging Girls in Computing Pathways, a three-year project designed to engage 8-13 year-old girls in coding through transmedia programming which inspires and prepares them for future computer science studies and career paths. The project includes five new PBS SciGirls episodes featuring girls and female coding professionals using coding to solve real problems; a new interactive PBSKids.org game that allows children to develop coding skills; nationwide outreach programming, including professional development for informal educators and female coding professionals to facilitate activities for girls and families in diverse STEM learning environments; a research study that will advance understanding of how the transmedia components build girls' motivation to pursue additional coding experiences; and a third-party summative evaluation.

Code: SciGirls! will foster greater awareness of and engagement in computer science studies and career paths for girls. The PBS SciGirls episodes will feature girls and female computer science professionals using coding to solve real-world challenges. The project's transmedia component will leverage the television content into the online space in which much of 21st century learning takes place. The new interactive PBSKids.org game will use a narrative framework to help children develop coding skills. Drawing on narrative transportation theory and character identification theory, TPT will commission two exploratory knowledge-building studies to investigate: To what extent and how do the narrative formats of the Code: SciGirls! online media affect girls' interest, beliefs, and behavioral intent towards coding and code-related careers? The studies aim to advance understanding of how media builds girls' motivation to pursue computer science experiences, a skill set critical to building tomorrow's workforce. The project team will also raise educators' awareness about the importance of gender equitable computer science instruction, and empower them with best practices to welcome, prepare and retain girls in coding. The Code: SciGirls! Activity Guide will provide educators with a relevant resource for engaging aspiring computer scientists. The new media and guide will also reside on PBSLearningMedia.org, reaching 1.2 million teachers, and will be shared with thousands of educators across the SciGirls CONNECT and National Girls Collaborative networks. The new episodes are anticipated to reach 92% of U.S. TV households via PBS, and the game at PBSKids.org will introduce millions of children to coding. The summative evaluation will examine the reach and impact of the episodes, game and new activities. PIs will share research findings and project resources at national conferences and will submit to relevant publications. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Rita Karl Karen Peterson Rebecca Osborne Barbara Flagg
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This Research in Service to Practice project will address the issues around Informal Education of rural middle school students who have high potential regarding academic success in efforts to promote computer and IT knowledge, advanced quantitative knowledge, and STEM skills. Ten school districts in rural Iowa will be chosen for this study. It is anticipated that new knowledge on rural informal education will be generated to benefit the Nation's workforce. The specific objectives are to understand how informal STEM learning shapes the academic and psychosocial outcomes of rural, high-potential students, and to identify key characteristics of successful informal STEM learning environments for rural, high-potential students and their teachers. The results of this project will provide new tools for educators to increase the flow of underserved students into STEM from economically-disadvantaged rural settings.

The President's Council of Advisors on Science and Technology predicts a rapid rise in the number of STEM jobs available in the next decade, describing an urgent need for students' educational opportunities to prepare them for this workforce. In 2014, 62% of CEOs of major US corporations reported challenges filling positions requiring advanced computer and information technology knowledge. The project team will use a mixed methods approach, integrating comparative case study and mixed effects longitudinal methods, to study the Excellence program. Data sources include teacher interviews, classroom observations, and student assessments of academic aptitude and psychosocial outcomes. The analysis and evaluation of the program will be grounded in understanding the local efforts of school districts to build curriculum responsive to the demands of their high-potential student body. The project design, and subsequent analysis plan, utilizes a mixed methods approach, incorporating case study and longitudinal quantitative methods to analyze naturalistic data and build robust evidence for the implementation and impact of this program. This project will provide significant insights in how best to design, implement, and support informal out-of-school learning environments to broaden participation in the highest levels of STEM education and careers for under-resourced rural students.
DATE: -
TEAM MEMBERS: Susan Assouline