This review takes a critical position with regards to Treagust and Duit’s article, Conceptual Change: A discussion of theoretical methodological and practical challenges for science education. It is proposed that conceptual change research in science education might benefit from borrowing concepts currently being developed in the sociology of emotions. It is further suggested that the study of social interaction within evolving emotional cultures is the most promising avenue for developing and extending theories about conceptual change.
Educators repeatedly underscore the intimate relationship between science and technology. This is problematic because technology, far from being “applied science,” presupposes a unique epistemology (techno-epistemology). A focus on the role of science in technology overshadows this unique way of knowing and hence limits technology education and privileges a scientific worldview in education. To appropriately frame the unique epistemology of technology in education, we propose a cognitive framework developed to understand the use and development of tools in human activity, namely, Cultural
DATE:
TEAM MEMBERS:
Michiel van EijckNicholas Xumthoult Claxton
This paper suggests new strategies for introducing students to robotics technologies and concepts, and argues for the importance of providing multiple entry points into robotics. In particular, the paper describes four strategies that have been successful in engaging a broad range of learners: (1) focusing on themes, not just challenges; (2) combining art and engineering; (3) encouraging storytelling; (4) organizing exhibitions, rather than competitions. The paper describes a new technology, called the PicoCricket, that supports these strategies by enabling young people to design and program
DATE:
TEAM MEMBERS:
Natalie RuskMitchel ResnickRobbie BergMargaret Pezalla-Granlund
In responding to the research on conceptual change, this article attempts to make two points. First, scientific concepts are not possessed by individuals; rather, they are part of a culture’s resources, which individuals learn to use for their own or for group purposes. Second, particular concepts are most effectively mastered when the learner is deeply engaged in solving a problem for which they function as effective semiotic tools in achieving a solution. On these grounds, it is argued that the mastering of scientific concepts is best achieved through learning to use them in motivated
While the knowledge economy has reshaped the world, schools lag behind in producing appropriate learning for this social change. Science education needs to prepare students for a future world in which multiple representations are the norm and adults are required to “think like scientists.” Location-based augmented reality games offer an opportunity to create a “post-progressive” pedagogy in which students are not only immersed in authentic scientific inquiry, but also required to perform in adult scientific discourses. This cross-case comparison as a component of a design-based research study
The author discusses her experiences in utilizing a sixth-grade Earth science field trip for students as an active research project. She examines a research project assignment conducted on the Sant Ocean Hall at the Smithsonian National Museum of Natural History in Washington, D.C. The author suggests that the use of active research can be applied to any museum or exhibit in the U.S.
The term 'cyberlearning' reflects a growing national interest in managing the interactions of technology and education, especially with respect to the use of networking and information technologies. However, there is little agreement about what the term means. Such disagreements reflect underlying differences in beliefs about the purposes of education. These disagreements are problematic for anyone interested in evaluating cyberlearning practices. This study used surveys and interviews to investigate how practitioners and experts in the field of cyberlearning define it, how they implement it
The Astronomical Society of the Pacific (ASP) and its collaborators are conducting a set of research and development activities focusing on early childhood astronomy in the first field-wide effort to increase the capacity of informal science education (ISE) institutions to effectively engage their youngest visitors (ages 3 - 5) in astronomy. Leading the project is an Action Research Group comprised of the ASP; experts in cognitive development, early childhood, and astronomy learning progressions from UC Santa Cruz, Cal Poly San Luis Obispo, and Penn State; and the Lawrence Hall of Science at UC Berkeley, Children's Discovery Museum of San Jose, and San Luis Obispo Children's Museum as sites for research, field testing, and implementation. The project will identify critical areas of focus for early childhood astronomy and will test the hypothesis that early astronomy learning is not only possible but may contribute to a more sophisticated understanding of the domain. A key question is: How can the ISE field scaffold children's early curiosity and ideas about astronomy to position them for greater understanding and interest in the topic? The results of the research and the materials that are created for educators will receive broad distribution nationally.
Recently, the relationship between identity and learning has come front and center in discussions about how to design successful learning environments for youth who struggle in mainstream institutions. In this essay, I explore the role identity development plays in constructing learning environments for traditionally marginalized youth. While I agree with DeGennaro and Brown on the importance of identity development for learning, I stretch the relationship between these two constructs in several ways: First, I will argue that how we define “technology” and what that means for marginalized
Argumentation has become an increasingly recognized focus for science instruction---as a learning process, as an outcome associated with the appropriation of scientific discourse, and as a window onto the epistemic work of science. Only a small set of theoretical conceptualizations of argumentation have been deployed and investigated in science education, however, while a plethora of conceptualizations have been developed in the interdisciplinary fields associated with science studies and the learning sciences. This paper attempts to review a range of such theoretical conceptualizations of
The summative evaluation of the Farming for Fuels classroom program and family event was conducted over two years. Two interim reports were delivered with preliminary results about specific areas of focus. This final report described the overall evaluation study methods and results, and made recommendations for potential revisions and improvements to the program. The evaluator worked with the program team at the Creative Discovery Museum to generate a list of questions to guide the evaluation study. The questions covered each of the major audiences for the program: museum educators, teachers
Conceptual change views of teaching and learning processes in science, and also in various other content domains, have played a significant role in research on teaching and learning as well as in instructional design since the late 1970s. An important issue is whether conceptual change can provide a powerful framework for improving instructional practice in such a way that students’ levels of scientific literacy are significantly increased. In this article, the first section provides an overview on the development of conceptual change perspectives. In sections two to six, we examine the