The Thames Science Center collaborative with the resources of the Smithsonian Astrophysical Observatory, Wesleyan University and the National Air and Space Museum will design and develop the project, "Shoot For the Moon." This science education project will capitalize on the attraction, familiarity and proximity of the moon using it as a basis to enrich and supplement the eight and ninth grade physical science curriculum. Ten classroom units, complimentary experiments and demonstrations will be developed. "Moonwatch" software and audio visual materials, including an instructional videotape and a multi.image presentation will accompany the units. Sixteen teachers and museum educators will participate in the training, evaluation and testing as the project is integratedinto the curriculum of twelve schools and four museums. The project is designed to be replicated in schools and science centers in different geographical locations nationally. The site for development and testing will be the Thames Science Center, a regional science museum in eastern Connecticut. The science center offers formal science enrichment programs and tours for students and teacher professional development programs throughout the region.
This planning grant is designed to engage urban and rural families in science learning while piloting curriculum development and implementation that incorporates both Native and Western epistemologies. Physical, earth, and space science content is juxtaposed with indigenous culture, stories, language and epistemology in after-school programs and teacher training. Project partners include the Dakota Science Center, Fort Berthold Community College, and Sitting Bull College. The Native American tribes represented in this initiative involve partnerships between the Dakota, Lakota, Nakota, Hidatsa, Mandan, and Arikara. The primary project deliverables include a culturally responsive Beyond Earth Moon Module, teacher training workshops, and a project website. The curriculum module introduces students to the moon's appearance, phases, and positions in the sky using the Night Sky Planetarium Experience Station during programs at the Boys and Girls Club (Ft. Berthold Community College), Night Lights Afterschool program (Sitting Bull Community College), and Valley Middle School (UND and Dakota Science Center). Students also explore core concepts underlying the moon's phases and eclipses using the interactive Nature Experience Station before engaging in the culminating Mission Challenge activity in which they apply their knowledge to problem solving situations and projects. Fifteen pre-service and in-service teachers participate in professional development workshops, while approximately 300 urban and rural Native youth and family members participate in community programs. A mixed-methods evaluation examines the impact of Western and Native science on the learning of youth and families and their understanding of core concepts of science in a culturally responsive environment. The formative evaluation addresses collaboration, development, and implementation of the project using surveys and interviews to document participant progress and obtain input. The summative evaluation examines learning outcomes and partnerships through interviews and observations. Presentations at national conferences, journal publications, and outreach to teachers in the North Dakota Public School System are elements of the project's comprehensive dissemination plan. The project findings may reveal impacts on participants' interest and understanding of connections between Native and Western science, while also assessing the potential for model replication in similar locales around the country.
These 16 articles offer a gentle introduction to nano science and technology, and can be used as marketing pieces for discussing nano with the press during NanoDays or other nano event promotion.
The NISE Network content map articulates the key ideas for our educational products, including programs, exhibits, and media experiences. It presents the content knowledge the network has identified as the most important for engaging the public in learning about nanoscale science, engineering, and technology. Content map resources include the full written text document, a powerpoint presentation outlining the map, and a one-page graphic summary of the map.
DATE:
TEAM MEMBERS:
NISE Network
resourceresearchProfessional Development, Conferences, and Networks
We've created a selection of useful products to help members of NISE Network promote the network within their own institution or with potential collaborators. These materials are updated regularly.
DATE:
TEAM MEMBERS:
NISE Network
resourceresearchProfessional Development, Conferences, and Networks
Because the NISE Network bridges the cultures of museums and the academic research world, participants from one profession may not always know the lingo of the other. At the same time, a shared vocabulary is essential for educators and researchers who want to truly collaborate on projects such as writing grant proposals. Therefore, we present the NISE Network Glossary of Two Worlds.
The Next Generation Science Standards (NGSS) identify an ambitious progression for learning energy, beginning in elementary school. To help the nation's teachers address this challenge, this project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities. Teachers will receive the science and pedagogical content knowledge they need to teach about energy in a crosscutting way across all their science curricula; students will be intellectually engaged in the practice of developing, testing, and revising a model of energy they can use to describe phenomena both in school and in their everyday lives; and formative assessment will guide the moment-by-moment advancement of students' ideas about energy. This project will develop and test a scalable model of PD that will enhance the ability of in-service early elementary teachers to help students learn energy concepts by coordinating formative assessment, face-to-face and web-based PD activities. Researchers will develop and iteratively refine tools to assess both teacher and student energy reasoning strategies. The goals of the project include (1) teachers' increased facility with, and disciplined application of, representations and energy reasoning to make sense of everyday phenomena in terms of energy; (2) teachers' increased ability to interpret student representations and ideas about energy to make instructional decisions; and (3) students' improved use of representations and energy reasoning to develop and refine models that describe energy forms and flows associated with everyday phenomena. The web-based product will contain: a set of formative assessments to help teachers to interpret student ideas about energy based on the Facets model; a series of classroom tested activities to introduce the Energy Tracking Lens (method to explore energy concept using multiple representations); and videos of classroom exemplars as well as scientists thinking out loud while using the Energy Tracking Lens. The project will refine the existing PD and build a system that supports online implementation by constructing a facilitator's guide so that the online community can run with one facilitator.
DATE:
-
TEAM MEMBERS:
Sara LacyRoger TobinNathaniel BrownStamatis VokosRachel ScherrKara GrayLane SeeleyAmy Robertson
This Stocklmayer, Rennie, and Gilbert article outlines current challenges in preparing youth to go into science careers and to be scientifically literate citizens. The authors suggest creating partnerships between informal and formal education to address these challenges in school.
To this volume on out-of-school STEM learning, we contribute an example of science. Our charge is to discuss what it means for children to be doing science and how educators can assess it. To that end, we’ve chosen an especially clear case. It happens to have taken place in school, but that shouldn’t matter for our purpose here; it’s the substance of the children’s reasoning that we’re assessing as the beginnings of science. We open with the case. We then articulate how it is an example of science, in particular of science as a pursuit. Finally we discuss what this view means for science
Amusement parks offer rich possibilities for physics learning, through observations and experiments that illustrate important physical principles and often involve the whole body. Amusement parks are also among the most popular school excursions, but very often the learning possibilities are underused. In this work we have studied different teacher roles and discuss how universities, parks or event managers can encourage and support teachers and schools in their efforts to make amusement park visits true learning experiences for their students.
DATE:
TEAM MEMBERS:
National Resource Center for Physics EducationAnn-Marie PendrillCecilia KozmaAndreas Theve