The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE:
-
TEAM MEMBERS:
Robert WesterveltCarol Lynn AlpertRay AshooriTina Brower-Thomas
This INSPIRE award is partially funded by the Cyber-Human Systems Program in the Division of Information and Intelligent Systems in the Directorate for Computer Science and Engineering, the Gravitational Physics Program in the Division of Physics in the Directorate for Mathematical and Physical Sciences, and the Office of Integrative Activities.
This innovative project will develop a citizen science system to support the Advanced Laser Interferometer Gravitational wave Observatory (aLIGO), the most complicated experiment ever undertaken in gravitational physics. Before the end of this decade it will open up the window of gravitational wave observations on the Universe. However, the high detector sensitivity needed for astrophysical discoveries makes aLIGO very susceptible to noncosmic artifacts and noise that must be identified and separated from cosmic signals. Teaching computers to identify and morphologically classify these artifacts in detector data is exceedingly difficult. Human eyesight is a proven tool for classification, but the aLIGO data streams from approximately 30,000 sensors and monitors easily overwhelm a single human. This research will address these problems by coupling human classification with a machine learning model that learns from the citizen scientists and also guides how information is provided to participants. A novel feature of this system will be its reliance on volunteers to discover new glitch classes, not just use existing ones. The project includes research on the human-centered computing aspects of this sociocomputational system, and thus can inspire future citizen science projects that do not merely exploit the labor of volunteers but engage them as partners in scientific discovery. Therefore, the project will have substantial educational benefits for the volunteers, who will gain a good understanding on how science works, and will be a part of the excitement of opening up a new window on the universe.
This is an innovative, interdisciplinary collaboration between the existing LIGO, at the time it is being technically enhanced, and Zooniverse, which has fielded a workable crowdsourcing model, currently involving over a million people on 30 projects. The work will help aLIGO to quickly identify noise and artifacts in the science data stream, separating out legitimate astrophysical events, and allowing those events to be distributed to other observatories for more detailed source identification and study. This project will also build and evaluate an interface between machine learning and human learning that will itself be an advance on current methods. It can be depicted as a loop: (1) By sifting through enormous amounts of aLIGO data, the citizen scientists will produce a robust "gold standard" glitch dataset that can be used to seed and train machine learning algorithms that will aid in the identification task. (2) The machine learning protocols that select and classify glitch events will be developed to maximize the potential of the citizen scientists by organizing and passing the data to them in more effective ways. The project will experiment with the task design and workflow organization (leveraging previous Zooniverse experience) to build a system that takes advantage of the distinctive strengths of the machines (ability to process large amounts of data systematically) and the humans (ability to identify patterns and spot discrepancies), and then using the model to enable high quality aLIGO detector characterization and gravitational wave searches
DATE:
-
TEAM MEMBERS:
Vassiliki KalogeraAggelos KatsaggelosKevin CrowstonLaura TrouilleJoshua SmithShane LarsonLaura Whyte
resourceprojectProfessional Development, Conferences, and Networks
This project supports the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC), a national Research Coordination Network of Broader Impacts to support professionals who assist researchers to design, implement, and evaluate the Broader Impacts activities for NSF proposals and awards. All NSF proposals are evaluated not only on the Intellectual Merit of the proposed research, but also on the Broader Impacts of the proposed work, such as societal relevance, educational outreach, and community engagement. Many institutions have begun employing Broader Impacts support professionals, but in most cases, these individuals have not worked as a group to identify and share best practices. As a consequence, there has been much duplication of effort. Through coordination, BIONIC is expected to improve efficiency, reduce redundancy, and have significant impact in several areas: 1) Researchers will benefit from an increased understanding of the Broader Impacts merit review criterion and increased access to collaborators who can help them design, implement, and evaluate their Broader Impacts activities; 2) Institutions and research centers will increase their capacity to support Broader Impacts via mentoring for Broader Impacts professionals and consulting on how to build Broader Impacts support infrastructure, with attention to inclusion of non-research-intensive universities, Historically Black Colleges and Universities, and Hispanic- and Minority-Serving Institutions that may not have the resources to support an institutional Broader Impacts office; and 3) NSF, itself, will benefit from a systematic and consistent approach to Broader Impacts that will lead to better fulfillment of the Broader Impacts criterion by researchers, better evaluation of Broader Impacts activities by reviewers and program officers, and a system for evaluating the effectiveness of Broader Impacts activities in the aggregate, as mandated by Congress and the National Science Board. Through its many planned activities, BIONIC will ultimately help advance the societal aims that the Broader Impacts merit review criterion was meant to achieve.
The main goals of the project will be accomplished through the four specific objectives: 1) Identify and curate promising models, practices, and evaluation methods for the Broader Impacts community; 2) Expand engagement in, and support the development of, high-quality Broader Impacts activities by educating current and future faculty and researchers on effective practices; 3) Develop the human resources necessary for sustained growth and increased diversity of the Broader Impacts community; and 4) Promote cross-institutional collaboration and dissemination for Broader Impacts programs, practices, models, materials, and resources. BIONIC will facilitate collaborative Broader Impacts work across institutions, help leverage previously developed resources, support professional development, and train new colleagues to enter into the Broader Impacts field. This project will improve the quality and sustainability of Broader Impacts investments, as researchers continue to create unique and effective activities that are curated and broadly disseminated. BIONIC will create a network designed to assist NSF-funded researchers at their institutions in achieving the goals of the Broader Impacts Review Criterion. In so doing, BIONIC will promote Broader Impacts activities locally, nationally, and internationally and help to advance the Broader Impacts field.
This award is co-funded by the Divisions of Molecular and Cellular Biosciences and Emerging Frontiers in the Directorate for Biological Sciences and by the Division of Chemistry in the Directorate for Mathematics and Physical Sciences.
People of color who live in low income, urban communities experience lower levels of educational attainment than whites and continue to be underrepresented in science at all educational and professional levels. It is widely accepted that this underrepresentation in science is related, not only to processes of historical exclusion and racism, but to how science is commonly taught and that investigating authentic, relevant science questions can improve engagement and learning of underrepresented students. Approaching science in these ways, however, requires new teaching practices, including ways of relating cross-culturally. In addition to inequity in science and broader educational outcomes, people of color from low income, urban communities experience high rates of certain health problems that can be directly or indirectly linked to mosquitoes. Recognizing that undertaking public health research and preventative outreach efforts in these communities is challenging, there is a critical need for an innovative approach that leverages local youth resources for epidemiological inquiry and education. Such an approach would motivate the pursuit of science among historically-excluded youth while, additionally, involving pre-service, in-service, and informal educators in joint participatory inquiry structured around opportunities to learn and practice authentic, ambitious science teaching and learning.
Our long-term goal is to interrupt the reproduction of educational and health disparities in a low-income, urban context and to support historically-excluded youth in their trajectories toward science. This will be accomplished through the overall objective of this project to promote authentic science, ambitious teaching, and an orientation to science pursuits among elementary students participating in a university-school-community partnership promise program, through inquiry focused on mosquitoes and human health. The following specific aims will be pursued in support of the objective:
1. Historically-excluded youth will develop authentic science knowledge, skills, and dispositions, as well as curiosity, interest, and positive identification with science, and motivation for continued science study by participating in a scientific community and engaging in the activities and discourses of the discipline. Teams of students and educators will engage in community-based participatory research aimed at assessing and responding to health and well-being issues that are linked to mosquitoes in urban, low-income communities. In addition, the study of mosquitoes will engage student curiosity and interest, enhance their positive identification with science, and motivate their continued study.
2. Informal and formal science educators will demonstrate competence in authentic and ambitious science teaching and model an affirming orientation toward cultural diversity in science. Pre-service, in-service, and informal educators will participate in courses and summer institutes where they will be exposed to ambitious teaching practices and gain proficiency, through reflective processes such as video study, in adapting traditional science curricula to authentic science goals that meet the needs of historically excluded youth.
3. Residents in the community will display more accurate understandings and transformed practices with respect to mosquitoes in the urban ecosystem in service of enhanced health and well-being. Residents will learn from an array of youth-produced, culturally responsive educational materials that will be part of an ongoing outreach and prevention campaign to raise community awareness of the interplay between humans and mosquitoes.
These outcomes are expected to have an important positive impact because they have potential for improving both immediate and long-term educational and health outcomes of youth and other residents in a low-income, urban community.
DATE:
-
TEAM MEMBERS:
Katherine Richardson BrunaLyric Colleen Bartholomay
San Francisco Health Investigators (SF HI), developed and led by the Science & Health Education Partnership at UC San Francisco, will use a community-based participatory research model to provide authentic research experiences for high school students, the majority from backgrounds underrepresented in the sciences.
SF HI will:
1) Develop a community of high school Student Researchers who will conduct research into health issues in their communities, study how adolescents respond to health messages, create new health messages informed by this research, and study the broader impacts of the materials they develop.
2) Partner with educational researchers to research the effects of SF HI on the high school student participants and the impact of the materials on the broader community.
3) Disseminate those materials shown to have the greatest impact nationally.
4) Publish results on the public understanding and awareness of health issues in peer-reviewed journals and other forums to inform and advance the field of public health.
The SF HI model is designed to leverage students’ cultural and technological knowledge and their social capital in the role of Student Researchers as they study the awareness, knowledge and attitudes about current health issues in their communities. It will have a broad range of impacts. Over the course of the project, 100 urban public high school students will be immersed in research projects that have the potential to directly benefit the health of their communities. These Student Researchers will design health messages informed by their social, cultural, and community knowledge and by their research results. They will collectively survey more than 8,500 community members – their peers, neighbors, and attendees at public gatherings to assess the effectiveness of these materials. Student-developed materials will be distributed broadly via the web, high school and college wellness centers, the NIH SEPA community, and other networks – thus these materials have the potential to reach over 1.5 million adolescents and young adults over the life of the project.
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:
Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.
Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.
This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
Our goal is to attempt the identification of Sevengill sharks (Notorynchus cepedianus) that may be returning to San Diego from year-to-year, using the pattern recognition algorithm provided in ‘Wildbook,’ a web-based application for wildlife data management, designed by Jason Holmberg. 'Wildbook' which has been successfully used to ID Whale Sharks (Rhincodon typus ) by their spotting patterns.
Sevengill sharks (Notorynchus cepedianus), are currently listed as Data deficient (DD) on the IUCN Red List: "This assessment is based on the information published in the 2005 shark status survey (Fowler et al. 2005).
Understanding the Sun Through NASA Missions. The Maryland Science Center (MSC) initiative is targeted to rural educators and library patrons in Maryland, Virginia and West Virginia. The Maryland Science Center is lead partner collaborating with Prince George’s County, Maryland Public Schools and its Howard B. Owens Science Center, and with NASA Goddard Space Flight Center to develop Educator Workshops and library exhibits for the Maryland counties of Cecil, Kent and Washington and NASA Wallops Visitor Center (Virginia) and NASA’s Independent Verification and Validation (IV&V) Center (West Virginia). The project will make participants aware and better informed of NASA Heliophysics science and NASA missions studying the Sun. Participants in the programs will come to a better understanding of the Sun, space weather, and the Sun’s far-reaching influence on our planet and the rest of the Solar System. Educators will be better prepared to teach students using NASA-developed hands-on materials demonstrated and provided in the workshops, as well as Sun Spotters and Solar Scopes to examine solar surface features, helping to engage them and their students in better understanding our closest star. Rural libraries patrons will encounter NASA mission science, and MSC visitors will acquire better comprehension of the Sun. All participants will come away with a renewed appreciation of our Sun and how it works, its variability, its ongoing effects on our planet, the nature of the scientific study of the Sun, and how and why NASA is exploring the Sun with its current missions.
Discover NASA is the Discovery Museum’s endeavor to engage students in grades K through 12 as well as members of the general public in innovative space science and STEM-focused learning through the implementation of two modules: upgrades to the Challenger Learning Center, and the creation of K through 12 amateur rocketry and spacecraft design programming. The programming will be piloted at the Discovery Museum and Planetarium, and at the Inter-district Discovery Magnet School and the Fairchild-Wheeler Multi-Magnet High School, with an additional strategic partnership with the University of Bridgeport, which will provide faculty mentors to high school seniors participating in the rocketry program. Through these two modules, the Discovery Museum and Planetarium aims to foster an early interest in STEM, increase public awareness about NASA, promote workforce development, and stimulate an interest in the future of human space exploration. Both modules emphasize design methodologies and integration of more advanced space science into the STEM curriculum currently offered by Discovery Museum to visitors and public schools. The Challenger Learning Center upgrades will enable the Museum to deliver simulated human exploration experiences related to exploration of the space environment in Low Earth Orbit and simulated human exploration of Moon, Mars, and beyond, which will increase public and student awareness about NASA and the future of human space exploration. The development of an amateur rocketry and spacecraft development incubator for education, the general public, and commercial space will stimulate the development of key STEM concepts.
EvalFest (Evaluation Use, Value, and Learning through Festivals of Science and Technology) will test innovative evaluation methods in science festivals that are being held across the country and assess in what ways and how effectively they are used. Morehead Planetarium and Science Center (at the University of North Carolina-Chapel Hill) and the University of California, San Francisco, in collaboration with over twenty science festivals, will (1) investigate whether a multisite evaluation approach is an effective model for creating common metrics for informal STEM education, (2) develop common methods to measure the effects of Festivals, (3) create a query-able database of 50,000 Festival attendees to share with the informal STEM learning field, and (4) document whether these efforts also result in new knowledge related to informal STEM education. The project will develop the Enterprise Feedback Management (EFM) system and query-able database for the festival community. EFMs are systems, including processes and software, that enable groups (such as the festival network) to collect, organize, analyze and share data. The EFM system will be designed to integrate data across sites and to allow users to extract data of interest. The project will refine evaluation tools currently used within the Science Festival Alliance that assess self-reported festival learning, and the effects of festival attendance, motivation, and future science participation. It will collect economic impact data and longitudinal festival attendee data. The project will also develop some new evaluation tools such as secret shopper observational protocols. Data from festival attendees will be collected onsite at participating festivals.
This project will bring STEM education to rural communities through local public libraries. Museum quality exhibits labelled as "Discover Earth", "Discover Technology", and "Discover Space" will spend 3 months at a series of locations around the Nation. Twenty four medium sized libraries will be chosen for the large exhibits and forty small libraries will be chosen for scaled down versions. The project's intent is to provide exhibits in every state and to reach as many under-represented individuals as possible. The significance of this project is that rural areas of this country are underserved regarding STEM education and since this segment of society is represented by 50-60 million residents, it is important to reach out to them. There is a significant segment of the Nation's population (50-60 million) that is underserved by out-of-school learning venues such as museums and science centers. An earlier phase 1 project demonstrated at 18 sites that rural libraries and librarians could provide STEM education to community members ranging in age from adults to children using these hands-on exhibits. Each exhibit (earth, space or technology) includes information about the topic and technologically enabled models to provide interesting and fun discovery mechanisms. They use common layman friendly language that highlights the most recent discoveries in each area. Each exhibit will be placed in the selected library for 3 months during which the library will organize events to feature and advertise the STEM learning opportunities. Another feature of this project will be to determine the models of learning in library settings and as a function of the demographics. The partners in this project that bring the necessary expertise are the American Library Association, the Afterschool Alliance, the Association of Rural and Small Libraries, the University of Colorado Museum, Datum Advisors, LLC, Evaluation and Research Associates, the Lunar and Planetary Institute, the American Geophysical Union, and the Space Science Institute.
Pipeline for Remote Sensing Education and Application (PRSEA), will increase awareness, knowledge and understanding of remote sensing technologies and associated disciplines, and their relevance to NASA, through a combination of activities that build a “pipeline” to STEM and remote sensing careers, for a continuum of audiences from third grade through adulthood. This program will be led by Pacific Science Center. The first objective is to engage 50 teens from groups underrepresented in STEM fields in a four-year career ladder program; participants will increase knowledge and understanding of remote sensing as well as educational pathways that lead to careers in remote sensing fields at NASA and other relevant organizations. The second objective is to serve 2,000 children in grades 3-5, in a remote sensing-based out-of school time outreach program that will increase the participant’s content knowledge of remote sensing concepts and applications and awareness and interest in remote sensing disciplines. PRSEA’s third objective is to engage 180 youth, grades 6-8, in remote sensing-themed summer intensive programs through which youth will increase knowledge of remote sensing concepts and applications and increase awareness and interest in educational and career pathways associated with remote sensing and NASA’s role in this field. The final objective is to engage 10,000 visitors of all ages with a remote sensing-themed Discovery Cart on Pacific Science Center’s exhibit floor. By engaging in cart activities, we anticipate visitors will increase their level of awareness and interest in the topic of remote sensing and NASA’s role in contributing to this field.