Arizona State University, in partnership with the National Informal STEM Education Network, will build fieldwide capacity for sustainability by empowering professionals, engaging public audiences, and leveraging museum and community assets to help build a sustainable future for people and the planet. The project will engage 90 museum professionals in a six-month professional development program, who along with other staff at their organizations will receive support in planning, developing, and/or implementing a sustainability-related project that aligns with their museum’s mission and their community’s priorities. A community of practice will promote ongoing learning and sharing of experiences among program participants. Additional professionals across the museum field will benefit from an online workshop series and other resources produced by the project.
The goal of this project is to understand and support the development of evidence-based public engagement with science (PES) strategies within STEM research organizations. It specifically seeks to understand how scientists, institutional leaders, and staff within the NSF’s Long Term Ecological Research (LTER) Network make decisions about the design and implementation of PES activities. The LTER Network includes 28 varied sites across North America and provides a unique opportunity to study PES decision-making within scientific organizations. The project is especially interested in the degree to which these types of organizations consider the interests and assets of local communities, including underrepresented communities. This project will lead to increased capacity for effective, evidence-based PES in an essential sector of the nation’s STEM research infrastructure. The project is a collaboration between PES practitioners within the LTER Network and PES researchers at Michigan State University and Oregon State University.
The project will address three primary research questions: (1) How do scientists, institutional leaders, and staff view and make decisions about the design and implementation of PES? (2) To what degree do PES activities and PES strategies consider the interests and assets of local communities, including those underrepresented in STEM? (3) How, and to what degree, can scientists, institutional leaders, and staff develop shared PES strategies aimed at enhancing reciprocal exchanges and ongoing relationships with communities? The project design includes: (a) surveys and interviews with LTER scientists, institutional leaders, and staff; (b) case studies coupled with strategic engagement planning to investigate the community contexts of PES; (c) a PES working group with LTER scientists and PES-related staff to integrate research and practice; (d) a PES monitoring system for tracking PES activities at LTER sites; and (e) an external advisory board of PES experts and representatives of other STEM research organizations to promote accountability of the work and broaden its impact beyond the LTER Network. The overall hypothesis is that it is possible to improve the effectiveness of PES through a focus on helping scientific organizations develop PES strategies in collaboration with relevant communities.
Centering Native Traditional Knowledge within informal STEM education programs is critical for learning for Native youth. In co-created, place-based learning experiences for Native youth, interweaving cultural traditions, arts, language, and community partnerships is vital for authentic, meaningful learning. Standardized STEM curricula and Western-based pedagogies within the mainstream and formal education systems do not reflect the nature of Native STEM knowledge, nor do they make deep connections to it. The absence of this knowledge base can reinforce a deficit-based STEM identity, which can directly impact Native youths’ participation and engagement in STEM. Reframing STEM education for Native youth to prioritize the vitality of community and sustainability requires active consideration of what counts as science learning and who serves as holders and conduits of STEM knowledge. As highly regarded holders of traditional and western STEM knowledge, Native educators and cultural practitioners are critical for facilitating Native youths’ curiosity and engagement with STEM. This Innovations in Development project is Native-led and centers Native knowledge, voice, and contributions in STEM through a culturally based, dual-learning approach that emphasizes traditional and western STEM knowledge. Through this lens, a network of over a dozen tribal nations across 20 U.S. states will be established to support and facilitate the learning of Traditional and Western STEM knowledge in a culturally sustaining manner. The network will build on existing programs and develop a set of unique, interconnected, and synchronized placed-based informal STEM programs for Native youth reflecting the distinctive cultural aspects of Native American and Alaska Native Tribes. The network will also involve a Natives-In-STEM Role Models innovation, in which Native STEM professionals will provide inspiration to Native youth through conversations about their journeys in STEM within cultural contexts. In addition, the network will cultivate a professional network of STEM educators, practitioners, and tribal leaders. Network efforts and the formative evaluation will culminate in the development and dissemination of a community-based, co-created Framework for Informal STEM Education with Native Communities.
Together with Elders and other contributors of each community, local leads within the STEM for Youth in Native Communities (SYNC) Network team will identify and guide the STEM content topics, as well as co-create and implement the program within their sovereign lands with their youth. The content, practitioners, and programming in each community will be distinct, but the community-based, dual learning contextual framework will be consistent. Each community includes several partner organizations poised to contribute to the programming efforts, including tribal government departments, tribal and public K-12 schools, tribal colleges, museums and cultural centers, non-profits, local non-tribal government support agencies, colleges and universities, and various grassroots organizations. Programmatic designs will vary and may include field excursions, summer and after school STEM experiences, and workshops. In addition, the Natives-In-STEM innovation will be implemented across the programs, providing youth with access to Native STEM professionals and career pathways across the country. To understand the impacts of SYNC’s efforts, an external evaluator will explore a broad range of questions through formative and summative evaluations. The evaluation questions seek to explore: (a) the extent to which the culturally based, dual learning methods implemented in SYNC informal STEM programs affect Native youths’ self-efficacy in STEM and (b) how the components of SYNC’s overall theoretical context and network (e.g., partnerships, community contributors such as Elders, STEM practitioners and professionals) impact community attitudes and behaviors regarding youth STEM learning. Data and knowledge gained from these programs will inform the primary deliverable, a Framework for Native Informal STEM Education, which aims to support the informal STEM education community as it expands and deepens its service to Native youth and communities. Future enhanced professional development opportunities for teachers and educators to learn more about the findings and practices highlighted in the Framework are envisioned to maximize its strategic impact.
DATE:
-
TEAM MEMBERS:
Juan ChavezDaniella ScaliceWendy Todd
resourceprojectProfessional Development, Conferences, and Networks
Among scientists, science communication is an increasingly important area of practice, scholarship, and research, especially with early career scientists. The growing interest in combating widespread disinformation and inaccurate public perception of science has increased demand for training in science communication; however, there is a significant gap in both research and training for scientists from diverse racial and ethnic cultural backgrounds. The project will address this knowledge and research gap by applying intercultural communication theory to the design, development, and testing of a new curriculum that will provide evidence-based methods to make science communication trainings inclusive and intersectional. The curriculum will be designed and evaluated to build capacity among science communication trainers and practitioners. Sixty pre-tenure environmental science faculty of diverse racial and ethnic backgrounds will be trained in strategic science communication skills using cultural perspectives and academic goals in science communication. The project will gather research data in collaboration with the national SciComm Trainers Network. In addition to advancing science communication research, training, and practice, the project will implement a novel, peer-reviewed podcast for broader impact. The project Fellows will be prepared to engage in a wide range of science communication activities throughout their careers and lead related efforts at their home institutions. Following a final workshop to develop culturally responsive guidance for science communication trainers, the project team will share findings to the field to inform future practice and societal impacts from advancing culturally relevant science communication in training programs. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
The project will address two significant gaps in science communication and intercultural communication research. First, despite the recognition that more research about race and ethnicity is needed in science communication, few studies have been conducted. Second, while findings on intercultural communication research are consistent across fields, such as health communication and business communication, the research has yet to examine how well-established theories in this area of study apply to the unique norms and processes of science. Investigators will test a novel theoretical framework grounded in two intercultural communication theories: identity negotiation theory and communication accommodation theory. The project will test the extent to which the professional norms and processes of STEM and academia relate to cultural norms and communication styles of underrepresented racial and ethnic minority scientists, and how these factors influence their science communication efforts. The project will use a mixed methods approach including in-depth interviews and surveys. The results of the study will be used to develop and adapt culturally tailored science communication training for 60 pre-tenure environmental science faculty from underrepresented groups. The results of the project will provide evidence to make science communication training and practice more inclusive and effective. The collaboration with the national SciComm Trainers Network will ensure broad dissemination and professional application of project findings. The project will increase representation of racial and ethnic minority scientists as science communicators, including in environmental news coverage; provide a new peer-reviewed podcast series for public audiences that will introduce listeners to environmental research through a culturally responsive lens; provide tested methods for designing inclusive and effective science communication training curricula; and will inform faculty efforts to incorporate science communication activities as part of career advancement.
NASA@ My Library is made possible through the support of the National Aeronautics and Space Administration (NASA) Science Mission Directorate as part of its Science Activation program. The project is led by the National Center for Interactive Learning (NCIL) at the Space Science Institute (SSI) in partnership with the American Library Association (ALA) Public Programs Office, Lunar and Planetary Institute (LPI), and Education Development Center (EDC). From 2016-2020, 78 public libraries (75 partner libraries and 3 pilot libraries), 18 State Library Agencies, 6 Portal to the Public Network sites, and 30 NASA-funded scientists participated in the project. More than 225,000 library patrons were reached through their efforts.
In 2021-2022, public libraries, universities, and state library agencies will participate in the project to increase and enhance STEAM learning opportunities in their communities, with an emphasis on reaching audiences underrepresented in STEM education and professions.
Potential STEM talent is lost each day for some of the most underserved and underrepresented populations in our nation's incarcerated men, women, and youth. With years devoid of quality STEM education and opportunities while in prison, incarcerated individuals are often significantly underprepared in STEM and for the STEM workforce. This educational debt exacerbates the pattern of marginalization for these vulnerable populations. Their STEM literacy, employability and potential for earning sustainable wages upon release are stifled. This deficit in opportunity is especially stark for underrepresented groups in the United States. Roughly 61% of the prison population is non-white, which far exceeds the national average of 35%. The U.S. also has the highest per capita incarceration rates in the world, incarcerating 698 men, women, and youth for every 100,000 people. Equally unsettling, for the first time in American history the population growth rate for incarcerated women has outpaced men by almost 2 to 1 for the past 25 years. While there are many contributing factors to the high rate of incarceration in the U.S., high quality prison STEM education programs have been shown to help counter socio-economic and education debts through greater STEM knowledge attainment, successful societal integration, and increased wage and advancement potential, which increase the likelihood that formerly incarcerated individuals and their children can live productive lives. The NSF INCLUDES STEM Opportunities in Prison Settings (STEM-OPS) Alliance endeavors to build a national network aimed at providing and supporting viable pathways to STEM for the incarcerated and formerly incarcerated. Using a collective impact approach, the Alliance will work collaboratively with key stakeholders and the target population to advance extant and untapped knowledge on high quality prison STEM education and opportunities. This work builds on efforts supported by the National Science Foundation, including exploratory work piloted by two NSF INCLUDES Design and Development Launch Pilots. If successful, this Alliance has the potential to significantly transform the face of the STEM workforce and the narrative regarding the incarcerated and formerly incarcerated and their potential to succeed in STEM.
The STEM-OPS Alliance is comprised of partner organizations committed to ensuring that STEM preparation during and post incarceration is commonplace and successful. During its first year, the Alliance will focus on establishing its national network through a shared vision and goals and a collective impact approach. It will conduct systems ecology mapping to inform the supports and resources needed for the target population to succeed in STEM. Focus groups and interviews will be conducted with incarcerated middle/high school aged youth to better understand their experiences in K-12 schools and with STEM education prior to and during incarceration. The results of the mapping and youth study will be used to inform the future work of the Alliance. Affordances the network endeavors to achieve include: (a) creating accessible STEM opportunities for the target populations through STEM courses, in-prison laboratories, research experiences for undergraduates (REUs), internships, and mentoring, (b) a culturally responsive platform to connect formerly incarcerated job seekers with STEM employment opportunities, (c) an evidence-based toolkit for effective STEM in-prison program design and implementation, (d) an annual convening of key stakeholders and representatives from the target populations to share learnings, disseminate findings and resources, and support the growth and development of the Alliance, and (d) leveraging connections to the greater NSF INCLUDES National Network. A formative and summative evaluation will be conducted by an external evaluator. Through its network, the STEM OPS Alliance is well poised to directly impact 700-880 incarcerated and formerly incarcerated men and women and reach a significant number of organizations working to improve STEM opportunities and outcomes within prison contexts.
This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. Significant co-funding has also been provided by the NSF Innovative Technology Experiences for Students and Teachers (ITEST) program and the NSF Advancing Informal STEM Learning Program (AISL).
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Eden BadertscherStanley AndrisseJannette CareyRich Milner
The goal of the National Science Foundation?s Research Coordination Network (RCN) program is to advance a field or create new directions in research or education by supporting groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, geographic and international boundaries. This RCN will bring together scholars and practitioners working at the intersection of equity and interdisciplinary making in STEM education. Making is a culture that emphasizes interest-driven learning by doing within an informal, peer-led and creative social environment. Hundreds of maker spaces and maker-oriented classroom pedagogies have developed across the country. Maker spaces often include digital technologies such as computer design, 3-D printers, and laser cutters, but may also include traditional crafts or a variety of artist-driven creations. The driving purpose of the project is to collectively broaden STEM-focused maker participation in the United States through pursuing common research questions, sharing resources, and incubating emergent inquiry and knowledge across multiple working sites of practice. The network aims to build capacity for research and knowledge, building in consequential and far-reaching mechanisms to leverage combined efforts of a core group of scholars, practitioners, and an extended network of formal and informal education partners in urban and rural sites serving people from groups underrepresented in STEM. Maker learning spaces can be particularly fruitful spaces for STEM learning toward equity because they foster interest-driven, collective, and community-oriented learning in making for social and community change. The network will be led by a team of multi-institutional and multi-disciplinary researchers from different geographic regions of the United States and guided by a steering committee of prominent researchers and practitioners in making and equity will convene to facilitate network activities.
Equitable processes are rooted in a commitment to understand and build on the skills, practices, values, and knowledge of communities marginalized in STEM. The research network aims to fill in gaps in current understandings about making and equity, including the many ways different projects define equity and STEM in making. The project will survey the existing research terrain to develop a dynamic and cohesive understanding of making that connects to learners' STEM ideas, communities, and historical ways of making. Additionally, the network will collaboratively develop central research questions for network partners. The network will create a repository for ethical and promising practices in community-based research and aggregate data across sites, among other activities. The network will support collaboration across a multiplicity of making spaces, research institutions, and community organizations throughout the country to share data, methodologies, ways of connecting to local communities and approaches to robust integration of STEM skills and practices. Project impacts will include new research partnerships, a dissemination hub for research related to making and equity, professional development for researchers and practitioners, and leveraging collective research findings about making values and practices to improve approaches to STEM-rich making integration in informal learning environments. The project is funded by NSF's Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of settings. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE:
-
TEAM MEMBERS:
Robert WesterveltCarol Lynn AlpertRay AshooriTina Brower-Thomas
This project will engage community members and youth in 13 rural, tribal, and Hispanic communities in the Four Corners Region of the south western U.S. with the science and cultural assets of water. Water is a significant and scarce resource in this geographic area. The Four Corners Region experiences low annual precipitation and high year-to-year fluctuations in water availability. Thus, water is a topic of great interest to community members, whose lives are shaped by water-related events such as drought, flood, and wildfires. Rural tribal, and Hispanic communities are often underserved with respect to science programming; their public libraries often function as the local science center. The project's inter-disciplinary team will develop, deploy, research, and evaluate an interactive traveling exhibit for small libraries, designed around regional water topics and complemented by interactive programming and community engagement events. Additionally, the team will build local capacity by fostering a community of practice among the host librarians, including participation through a support system--the STAR Library Network--to increase their science programming.
This project creates a traveling exhibit and complementary programming around water topics. Through an exhibit co-design model, communities will provide input in the exhibit development, identify water topics that are critical to them, and engage the multi-generational audiences. The exhibit merges the captivating attraction of water with the underlying science content and community context, giving patrons the opportunity to explore these topics through active learning stations, informational panels, citizen science-based activities, and an interactive regional watershed model. Artistic representations of water will be developed by community groups and incorporated into the exhibit as a dynamic display element.
Project goals are to:
Spark interest in and increase understanding of water as a critical resource and cultural asset across rural, tribal, and Hispanic communities in the Four Corners Region.
Increase availability of and access to engaging programming for underserved rural, tribal, and Hispanic communities focusing on the science and cultural aspects of water in the Four Corners Region.
Build capacity for libraries to implement water-focused science programs, and increase available science learning and science communication resources tailored to these informal learning settings.
Foster a Community of Practice (CoP) for participating librarians to support the development of their programming and content knowledge.
Advance the body of research on informal learning environments and their role in developing community members' science ecosystems and science identities, particularly in library settings.
The project team will rigorously assess the extent to which program approaches and components stimulate patrons' interest in science, increase science knowledge, and support building a personal science identity. The model is based on the STEM Learning Ecosystems Framework. Robust evaluation will guide the program development through a front-end needs assessment and iterative revision cycles of implementation strategies.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
The Center for Advancing the Societal Impacts of Research (CASIR) will advance the rigor, relevance, and practice of broader impacts (BI) by (a) cultivating and strengthening the existent and emerging BI expert community; (b) building capacity of researchers and educators to enhance and articulate the broader impacts of their work; and (c) creating socio-technical infrastructure able to adapt to stakeholder needs as BI continues to grow and evolve. CASIR builds on the foundational work of the National Alliance for Broader Impacts and will advance the practice of translating scientific research for public understanding and meet the growing demand for innovative BI training and resources.
The Center will develop resources and provide professional development to diverse audiences across multiple institution types and settings, including research-intensive universities, minority-serving institutions, technical and community colleges, and primarily undergraduate institutions in the jurisdictions of the Established Program to Stimulate Competitive Research. CASIR will directly enhance BI capacity at the individual, departmental, institutional, and national levels. Particular focus will be given to individual researchers and institutions representing and serving traditionally under-served populations. In addition, CASIR will facilitate dialogue and collaboration around evidence-based approaches to enhancing, evaluating, and documenting research impacts. Overall, the work will be valuable to the community of researchers driving discovery, the community of professionals who provide BI support and collaboration with researchers, and the public which stands to benefit from research and education projects that are well-designed and executed in a way that enhances their broader impacts.
NSF-wide support for this Center augments the Foundation's current efforts to educate research communities about the importance of the broader impacts criterion in the review process and to communicate the societal benefits of fundamental science and engineering research. CASIR's emphasis on documentation, evidence, and best practices will support an evidence-building approach to investing in discovery and innovation.
This award is co-funded by the Office of Integrative Activities (OIA) and the following Directorates: Biological Sciences (BIO), Computer and Information Science and Engineering (CISE), Education and Human Resources (EHR), Engineering (ENG), Geosciences (GEO), Mathematical and Physical Sciences (MPS), and Social, Behavioral, and Economic Sciences (SBE).
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.