This article describes the development of Human +, an exhibition designed to explore the role of technology in daily life explored through the lens of technologies for people with disabilities. Reflecting the design cycle of Participatory Action Design, Human + integrated participation from people with disabilities, both as users and as designers of technology.
To better help museum visitors make sense of large data sets, also called “big data”, this study focuses on what museum visitors felt individual layers of a visual (alone and in combination with other layers) were communicating to them as the visual was constructed or deconstructed layer by layer. A second, smaller study, collected data to better understand how adult visitors would construct large data visualizations. This study was concerned with how people make sense of “big data” in their daily lives and how they engage with reference systems. The primary study used four different “big data
To better understand how audiences in public spaces, in this case those in a museum setting, relate to and make sense of the phrases “Big Data” and “Data Visualizations”, this study investigated visitors understanding of these terms. This formative study used intercepts; approaching adult visitors and inviting them to participate in a very brief interview. If the person agreed, they were asked additional questions. The first question asked about awareness of the phrase, “Big Data” or for a very small comparison group, “Data Visualization.” Visitors were then asked “How would you explain “Big
It is all very well to note the hyperbole about patents and ‘intellectual property’ in the recent battles between technology companies such as Apple, Samsung and HTC. But how can museums productively use collection items marked with a patent beyond workaday tasks of identification and cataloguing? We argue that information on patents can enhance visitors’ critical engagement with museum displays; complex ownership claims and counter-claims in patent disputes can underpin lively narratives based around museum objects. Asking why some objects and not others were patented, and how historical
To better help museum visitors make sense of large data sets, also called “big data”, this study investigated if there were generalizable ways in which visitors engage with and then make meaning of such data sets. This front-end study was designed to explore if there were different, distinct, and repeatable patterns intuited by individuals as they work with large data sets. This was a descriptive, process method using a complex card sort with an interview. Each card had the name of one food item written on it. Food items were diverse, including eggs, crackers, lasagna, apples, tofu and almonds
The National Museum of the American Indian in Washington, DC--the first national museum devoted solely to the presentation and support of the indigenous cultures of the Americas--opened its doors to the public on 21 September 2004. This paper reviews the first, second, and third waves of critical response to the museum, in order to assess the strengths and weaknesses of the New Museology in an indigenous museum context. Two distinct tales emerge from these critical responses: one of Native empowerment, and one that centers on the museum's display practices that are informed by the New
In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.
This multiplatform media and science center project is designed to engage audiences in humanity's deepest questions like the nature of love, reality, time and death in both scientific and humanistic terms. Project deliverables include 5 hour-long radio programs for broadcast on NPR stations, public events/museum exhibits at the Exploratorium in San Francisco, kiosks in venues throughout the city, and a social media engagement campaign. The audience of the project is large and diverse using mass media and the internet. But the project will specifically target young, online, and minority audiences using various strategies. The project is designed to help a diverse audience understand the impact of new scientific developments as well as the basic science, technology, engineering and math needed to be responsible, informed citizens. Innovative elements of the project include the unique format of the radio programs that explore complex topics in an engaging and compelling way, the visitor engagement strategy at the Exploratorium, and the social media strategy that reaches niche audiences who might never listen to the radio broadcasts, but find the podcasts and blogs engaging. The Exploratorium will be opening a new building in 2013 and will include exhibits and programs that are testing grounds for this project. This is a new model that aligns the radio content with exhibitions, social media, and in person events at the Exploratorium, providing a unique holistic approach. The project is designed to inspire people to think and talk about science and want to find out more. The evaluation will measure the impacts on the targeted audiences reached by each of the key delivery methods. Data will be collected using focus groups; intercept interviews with people in public places, and longitudinal panels. The focus will be on 5 targeted audiences (young adults, families with children, non-NPR listeners, underrepresented minorities, and adults without college experience). This comprehensive evaluation will likely contribute important knowledge to the field based on this multiple-platform collaborative model.
This project by teams at the University of Alaska and the Oregon Museum of Science and Industry will engage the public in the topic of the nature and prevalence of permafrost, its scale on the earth and the important role it plays in the global climate. It builds on 50 years of informal education and outreach at the Alaskan Permafrost Tunnel near Fairbanks, AK, which, since the 1960s, has been the Nation's only underground facility for research related to permafrost and climate. The project has four components: (1) a nationally distributed 2,000 square-foot traveling exhibition; (2) exhibit and program enhancements to the learning opportunities at the tunnel; (3) programs, table-top exhibits and oral history research in 27 Native Alaskan villages; and (4) an education research study. Each of these components will be evaluated over the course of the work. By upgrading the displays at the tunnel, and by taking traveling programs to the villages, the work will extend the tunnel experience across Alaska. In the villages the team will collect stories about climate change, along with samples of real ancient ice and permafrost. These stories and materials will be used in the traveling exhibit which is expected to be at three museums per year for eight years. The research component of the initiative will build on the observation to date that the tunnel has provided thousands of visitors with an underground immersive environment where they learn about the science research being conducted and engage with climate-sensitive materials (e.g., permafrost, wedge ice, frozen silt, Pleistocene bones) using all of their senses. It has been conjectured that their learning experiences are enhanced by interacting with real vs. replicated objects. As museums often contain exhibits that are more likely to contain replicated and/or virtual objects and environments, understanding the impact that these different categories of objects have on learning is important. Using both types of materials, the project will investigate differences in their efficacy in informal science learning institutions related to climate change. Real objects are postulated to have the following attributes that stimulate fuller engagement; they are (1) information-rich by virtue of such features as their texture, odor, and dimensionality; (2) at real-life scale; (3) authentic, i.e., original objects; and (4) often unique, i.e., have inherent value. Research questions will explore the potential impacts on learning of these and related features. Methods employed will be observation, video, and interviews of the public with a particular focus on visitor talk with respect to explanations and elaborations about permafrost, tipping points, climate change, and geological time.
This Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) project from the University of New Hampshire focuses on a "living bridge", which exemplifies the future of smart, sustainable, user-centered transportation infrastructure. Bridges deliver such a fundamental service to society that they are often taken for granted. Typically, bridges only stir the public's interest when they must unexpectedly be replaced at great cost, or, worse, fail. The Living Bridge project will create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy, by transforming the landmark Memorial Bridge--a vertical lift bridge over the tidal Piscataqua River, with pedestrian access connecting Portsmouth, New Hampshire to Kittery, Maine--into a living laboratory for researchers, engineers, scientists, and the community at large. The Living Bridge will engage innovators in sensor and renewable energy technology by creating an incubator platform on a working bridge, from which researchers can field test and evaluate the impact and effectiveness of emerging technologies. The Living Bridge will also serve as a community platform to educate citizens about innovations occurring at the site and in the region, and about how incorporating renewable energy into bridge design can lead to a sustainable transportation infrastructure with impact far beyond the region. Sustainable, smart bridges are key elements in developing a successful infrastructure system. To advance the state of smart service systems and clean energy conversion, this project team will design and deploy a structural and environmental monitoring system that provides information for bridge condition assessment, traffic management, and environmental stewardship; advances renewable energy technology application; and excites the general public about bridge innovations. This PFI:BIC project is enabled through partnerships between academic researchers with expertise in structural, mechanical and ocean engineering, sensing technology and social science; small businesses with expertise in instrumentation, data acquisition, tidal energy conversion; and state agencies with bridge design expertise. The Living Bridge technical areas are structural health monitoring, tidal energy conversion with fluid-structure interaction measurements, estuarine environmental monitoring, and outreach communication. Sensors will be used to calibrate a three-dimensional analytical structural finite element model of the bridge. The predicted structural response from this model will assess the measured structural response of the bridge as acceptable or not. Instruments installed on the turbine deployment platform will measure the spatio-temporal structure of the turbulent inflow and modified wake flow downstream of the turbine. Resulting data will include turbine performance and loads for use in fluid-structure interaction models. Deployed environmental sensors will measure estuarine water quality; wildlife deterrent sensors will deter fish from the turbine. Hydrophones and video cameras will be used before and during turbine deployment to monitor environmental changes due to turbine presence. Outreach efforts will make bridge data, history, and information about new systems accessible and understandable to the public and K-12 educators, facilitated by an information kiosk installed at the bridge. Public awareness will be assessed with survey methods used in the N.H. Granite State Poll. The lead institution is the University of New Hampshire (UNH) with its departments of Civil Engineering, Mechanical Engineering, and Sociology, and the Center for Ocean Engineering. Primary industrial partners are a large business, MacArtney Underwater Technology Group, Inc. (Houston, TX) and two small businesses Lite Enterprises, Inc. (Nashua, NH) and Eccosolutions, LLC (New Paltz, NY.) Broader context partners are New Hampshire Department of Transportation, NH Fish & Game Department, NH Port Authority, NH Coastal Program, City of Portsmouth (NH), Sustainable Portsmouth (nonprofit), Maine Department of Transportation; U.S. Coast Guard, Archer/Western (Canton, MA, large business), Parsons-Brinkerhoff (Manchester, NH, large business), UNH Tech Camp, UNH Infrastructure and Climate Network, UNH Leitzel Center for Mathematics, Science and Engineering Education, and Massachusetts Institute of Technology's Changing Places (a joint Architecture and Media Laboratory Consortium, in Cambridge, MA).
DATE:
-
TEAM MEMBERS:
Erin BellTat FuMartin WosnikKenneth BaldwinLawrence Hamilton
This project will bring STEM content knowledge to visitors to Cuyahoga Valley National Park via mobile device applications. Visitors will be able to use their mobile phones to access details about Park features (such as where they are in the park, what they are looking at, and where are related features), supporting just-in-time STEM learning. Cuyahoga Valley National Park receives around 2.5 million visitors every year and experiences multitudes of inquiries. Until this project, visitors were subjected to less than optimum signage for information and background about a given feature that may or may not be of interest to them. In this project, knowledge building information will be selected by the visitors and delivered to them with convenience and speed. The data base supporting this effort will provide the visitor with identification and the history of park features as well as more in depth knowledge building information while they are in the park and after the leave, providing a more holistic experience than is currently available. The investigators will build the system in parts, testing the feasibility at each stage and evaluating affective and cognitive outcomes of each portion. Research questions that will be addressed in the course of this project include: (1) What outcomes associated with use of this GPS-base system could inform future development and implementation? and (2) What contributions do these GPS-based mobile learning applications have on informal science learning as understood within the Six Strands of Informal Science Learning? It is expected knowledge generated in this project will stimulate additional programing for increasing efficacy and use in other widely ranging venues. If successful, it is easy to imagine how this STEM knowledge-building application could be extended for use in other venues across the country.
DATE:
-
TEAM MEMBERS:
Richard FerdigRuoming JinPatrick LorchAnnette Kratcoski
The Exploratorium, in collaboration with the Boys and Girls Club Columbia Park (BGC) in the Mission District of San Francisco, is implementing a two-year exploratory project designed to support informal education in science, technology, engineering, and mathematics (STEM) within underserved Latino communities. Building off of and expanding on non-STEM-related efforts in a few major U.S. cities and Europe, the Exploratorium, BGC, and residents of the District will engage in a STEM exhibit and program co-development process that will physically convert metered parking spaces in front of the Club into transformative public places called "parklets." The BGC parklet will feature interactive, bilingual science and technology exhibits, programs and events targeting audiences including youth ages 8 - 17 and intergenerational families and groups primarily in the Mission District and users of the BGC. Parklet exhibits and programs will focus on STEM content related to "Observing the Urban Environment," with a focus on community sustainability. The project explores one approach to working with and engaging the public in their everyday environment with relevant STEM learning experiences. The development and evaluation processes are being positioned as a model for possible expansion throughout the city and to other cities.