Advances in the life sciences - from the human genome to biotechnology to personalized medicine and sustainable communities - have profound implications for the well-being of society and the natural world. Improved public understanding of such scientific advances has the potential to benefit both individuals and society through enhanced quality of life and environmental protection, improved K-12 and undergraduate science education, greater understanding of human connections to the natural world, and more sustainable policies and regulations. Yet few systems of support exist to help life
DATE:
TEAM MEMBERS:
Elizabeth Stallman BrownLaurence YoungKeegan SawyerNational Research Council
resourceresearchProfessional Development, Conferences, and Networks
Science, technology, engineering, and mathematics (STEM) permeate the modern world. The jobs people do, the foods they eat, the vehicles in which they travel, the information they receive, the medicines they take, and many other facets of modern life are constantly changing as STEM knowledge steadily accumulates. Yet STEM education in the United States, despite the importance of these subjects, is consistently falling short. Many students are not graduating from high school with the knowledge and capacities they will need to pursue STEM careers or understand STEM-related issues in the
DATE:
TEAM MEMBERS:
Steve OlsonJay LabovNational Research Council
Climate Change Education produced climate change educational experiences for both professional and general public audiences. In particular, the Science Museum of Minnesota (SMM), in collaboration with NASA Goddard Institute for Space Studies (GISS), University of Minnesota’s Institute on the Environment, and the University of Wisconsin’s Cooperative Institute for Meteorological Satellite Studies (CIMSS), developed new content for SMM’s Earth Buzz online network, developed a climate change educational program for middle and high school teachers, invited audiences of policy- and decision-makers to SMM for climate change discussions, and recruited and mentored a climate change team of high school students through SMM’s Kitty Andersen Youth Science Center. The project goals were to increase the awareness and understanding in target audiences that (1) human activities are now surpass natural processes as driving forces of atmospheric change, (2) the behavior of Earth's atmosphere in the 21st Century will be increasingly determined by humans, and (3) human ingenuity is the key to adapting to and mitigating the climate changes underway. Highlights of the project included organizing and hosting the October 26-28, 2011 City of Saint Paul Climate Change Adaptation Scenario Planning Workshop, which catalyzed climate resilience as a city planning priority, organizing and hosting with Morris A. Ward, Inc. the October 5-6, 2012 Climate Change Science for Minnesota Broadcast Meteorologists workshop which brought together local TV and radio meteorologists with some of the best climate scientists in the U.S., helping to organize and host on November 7, 2013 the State of Minnesota’s first conference devoted exclusively to climate change adaptation, and the adoption by the museum of a public statement on climate change (www.smm.org/climatechange). The project endures although the grant has concluded through the continued delivery of the museum’s Climate Changed outreach program to a wide array of audiences and through the museum’s continued involvement with the many partnerships established during the Climate Change Education project, as exemplified by the museum working with the City of Saint Paul and Macalester College on an upcoming St. Paul Neighborhood Climate Adaptation Workshop and a Worldwide Views on Climate and Energy event (climateandenergy.wwviews.org/).
The goal of this project is to advance STEM education in Hawaii by creating a series of educational products, based on NASA Earth Systems Science, for students (grades 3-5) and general public. Bishop Museum (Honolulu HI) is the lead institution. NASA Goddard Space Flight Center is the primary NASA center involved in the project. Partners include Hawaii Department of Education and a volunteer advisory board. The evaluation team includes Doris Ash Associates (UC Santa Cruz) and Wendy Meluch of Visitor Studies Inc. Key to this project: the NASA STEM Cohort, a team of six current classroom teachers whom the Museum will hire. The cohort will not only develop curricula on NASA earth science systems but also provide guidance to Bishop Museum on creating museum educational programming that best meets the needs of teachers and students. The overall goal of Celestial Islands is to advance STEM education in Hawaii through the use of NASA Earth Science Systems content. Products include: 1) combined digital planetarium/Science on a Sphere® program; 2) traveling version of that program, using a digital planetarium and Magic Planet; 3) curricula; 4) new exhibit at Bishop Museum on NASA ESS; 5) 24 teacher workshops to distribute curricula; 6) 12 community science events. The project's target audience is teachers and students in grades 3-5. Secondary audiences include families and other members of the general public. A total of 545,000 people will be served, including at least 44,000 students.
The Maryland Science Center (MSC) Astrobiology project includes an interactive exhibit and Davis Planetarium program for school and public museum visitors, exploring the search for life in our Solar System, the search for exoplanets and an understanding of extreme forms of Earthly life. Four day-long Educator Workshops have taken place during the project with a total of 179 teachers participating.
Baltimore’s MSC is the lead institution, with the project led by PI Van Reiner, MSC President and CEO and Co-PI Jim O’Leary, MSC Senior Scientist, and science advisors consisting of astronomers, biologists, a geologist and educators representing NASA Goddard Space Flight Center, Space Telescope Science Institute, Carnegie Institute of Washington, Johns Hopkins University and the University of Maryland and Maryland School for the Blind.
The project provides visitors with a sense of the Milky Way Galaxy’s size and composition, the galaxy’s number of stars and potential planets, and the number of other galaxies in the Universe. The exhibit explores Earthly extremophiles, what their survival signifies for life elsewhere in the Solar System, and examines possibilities for life on Mars and moons of the Solar System, explores techniques used to detect exoplanets and NASA’s missions searching for exoplanets and Earth-like worlds. The project looks to provide a sense of the vast number of potential planets that exist, the hardiness of Earthly life, the possibilities for life on nearby planets and moons, and the techniques used to search for exoplanets.
The exhibit and Planetarium program premiered November 2, 2012, and both remain as long-term Science Center offerings. Since opening, MSC has hosted nearly a million visitors, and with the Life Beyond Earth exhibit located in a highly trafficked area near the Davis Planetarium and Science On a Sphere, the great majority of visitors have experienced the exhibit. The We Are Aliens program in the Davis Planetarium has been seen by more than 26,000 visitors since opening.
This short video entitled "Urban Science for the Hip-Hop Generation: The Documentary" provides an overview of a research program led by Chris Emdin of Teacher's College in NYC. Professor Emdin has designed a science program that builds on students' cultural and personal resources to engage students in STEM learning from a position of familiarity and strength. This is a powerful example of making STEM culturally relevant to students as a way to engage and excite them in learning.
In responding to the research on conceptual change, this article attempts to make two points. First, scientific concepts are not possessed by individuals; rather, they are part of a culture’s resources, which individuals learn to use for their own or for group purposes. Second, particular concepts are most effectively mastered when the learner is deeply engaged in solving a problem for which they function as effective semiotic tools in achieving a solution. On these grounds, it is argued that the mastering of scientific concepts is best achieved through learning to use them in motivated
Challenged by a National Science Foundation-funded conference, 2020 Vision: The Next Generation of STEM Learning Research, in which participants were asked to recognize science, technology, engineering, and mathematics (STEM) learning as lifelong, life-wide, and life-deep, we draw upon 20 years of research across the lifespan to propose a new way of thinking about and investigating the topic. We propose Fullness of Life (or Total Life) as the minimal unit of analysis that allows people generally and researchers specifically to make sense of cognition. This move reverses traditional
DATE:
TEAM MEMBERS:
Wolff-Michael RothMichiel Van Eijck
resourceresearchProfessional Development, Conferences, and Networks
In this article, the author expresses her views on how science technology, engineering, and mathematics (STEM) standards can be developed to upgrade lifelong science learning. She mentions that the International Conference in the Learning Sciences (ICLS) that will be conducted by the International Society for the Learning Sciences (ISLS) will have an advantage to the development of the STEM standards. She also comments on the establishment of cyberlearning environments to improve science education.
In the past decade, we have seen an increased focus on measuring the impact of zoos, aquariums, and other free-choice learning environments on the conservation-related knowledge, attitudes and behavior of the visiting public. However, no such studies have been conducted on the impact of such environments on the staff working in these facilities – the very staff that in turn interact with the public on a daily basis. Clearly these interactions are recognized as being important; for example, the thousands of staff employed by Disney’s Animal Kingdom are regularly provided with conservation
DATE:
TEAM MEMBERS:
Amy GroffDonna LockhartJacqueline OgdenLynn Dierking
In both formal and informal settings, not only science but also views on the nature of science are communicated. Although there probably is no singular nature shared by all fields of science, in the field of science education it is commonly assumed that on a certain level of generality there is a consensus on many features of science. In this paper, it will be argued that because of their focus on unifying items and their ignoring of the actual heterogeneity of science, it is questionable whether such consensus views can fruitfully contribute to the aim of science communication, i.e., to
In this paper, research on interest and motivation is revisited in the context of informal science learning (ISL) settings such as museums, out-of school or after-school clubs or groups, science camps, and enrichment programs1. The ISL context differs from traditional school "cookbook" science in a number of critical ways: rather than emphasizing science information, it is designed to engage participants in inquiry-informed and free-choice opportunities to work with authentic science2. Productive participation in the ISL setting should enable the development of scientific literacy and