This chapter discusses the selection and potential use of electronic games and simulations in distance learning supported by an operational model called AIDLET. After analyzing the different approaches to the use of games and simulations in education, and discussing their benefits and shortcomings, a framework was developed to facilitate the selection, repurposing, design and implementation of games and simulations, with focus on the practical aspects of the processes used in Open and Distance Learning (ODL). Whereas traditional learning is based on knowledge memorization and the completion of
DATE:
TEAM MEMBERS:
Jose BidarraMeagan RothschildKurt Squire
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE:
-
TEAM MEMBERS:
Kurt ThoroughmanGregory DeAngelisRandy BucknerSteven PetersenDora Angelaki
Sustainability science, as described by the PNAS website, is “…an emerging field of research dealing with the interactions between natural and social systems, and with how those interactions affect the challenge of sustainability: meeting the needs of present and future generations while substantially reducing poverty and conserving the planet's life support systems.” Over the past 7 y, PNAS has published over 300 papers in its unique section on sustainability science and has received and reviewed submissions for many hundreds more. What kind of a science is sustainability science?
The concepts of sustainable development have experienced extraordinary success since their advent in the 1980s. They are now an integral part of the agenda of governments and corporations, and their goals have become central to the mission of research laboratories and universities worldwide. However, it remains unclear how far the field has progressed as a scientific discipline, especially given its ambitious agenda of integrating theory, applied science, and policy, making it relevant for development globally and generating a new interdisciplinary synthesis across fields. To address these
Right now about one billion people suffer from chronic hunger. the world’s farmers grow enough food to feed them, but it is not properly distributed and, even if it were, many cannot afford it, because prices are escalating. But another challenge looms. By 2050 the world’s population will increase by two billion or three billion, which will likely double the demand for food, according to several studies. Demand will also rise because many more people will have higher incomes, which means they will eat more, especially meat. Increasing use of cropland for biofuels will make meeting the doubling
DATE:
TEAM MEMBERS:
Jonathan Foley
resourceresearchProfessional Development, Conferences, and Networks
Innovation processes are rarely smooth and disruptions often occur at transition points were one knowledge domain passes the technology on to another domain. At these transition points communication is a key component in assisting the smooth hand over of technologies. However for smooth transitions to occur we argue that appropriate structures have to be in place and boundary spanning activities need to be facilitated. This paper presents three case studies of innovation processes and the findings support the view that structures and boundary spanning are essential for smooth transitions. We
Comprehension of the nature and practice of science and its social context are important aspects of communicating and learning science. However there is still very little understanding among the non-scientific community of the need for debate in driving scientific knowledge forward and the role of critical scrutiny in quality control. Peer review is an essential part of this process. We initiated and developed a pilot project to provide an opportunity for students to explore the idea that science is a dynamic process rather than a static body of facts. Students from two different schools
The interview concerns the role of scientific books in the Italian society from the 19th century until today. Having played an important role in the formation of a national scientific community, science popularization has offered a ceaseless high-quality production during the past two centuries. On the other hand, even today scientific publications do reach only a narrow élite. In the author’s opinion, only the school system has the power to widen the public for science in Italy.
This report highlights advances in neuroscience with potential implications for education and lifelong learning. The report authors, including neuroscientists, cognitive psychologists and education specialists, agree that if applied properly, the impacts of neuroscience could be highly beneficial in schools and beyond. The report argues that our growing understanding of how we learn should play a much greater role in education policy and should also feature in teacher training. The report also discusses the challenges and limitations of applying neuroscience in the classroom and in learning
In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.
There is a movement afoot to turn the acronym STEM—which stands for science, technology, engineering, and mathematics—into STEAM by adding the arts. Science educators have finally begun to realize that the skills required by innovative STEM professionals include arts and crafts thinking. Visual thinking; recognizing and forming patterns; modeling; getting a "feel" for systems; and the manipulative skills learned by using tools, pens, and brushes are all demonstrably valuable for developing STEM abilities. And the National Science Foundation and the National Endowment for the Arts have gotten
The Jackprot is a didactic slot machine simulation that illustrates how mutation rate coupled with natural selection can interact to generate highly specialized proteins. Conceptualized by Guillermo Paz-y-Miño C., Avelina Espinosa, and Chunyan Y. Bai (New England Center for the Public Understanding of Science, Roger Williams University and the University of Massachusetts, Dartmouth), the Jackprot uses simplified slot-machine probability principles to demonstrate how mutation rate coupled with natural selection suffice to explain the origin and evolution of highly specialized proteins. The