The days of desktop dominance are over. Mobile has swiftly risen to become the leading digital platform, with total activity on smartphones and tablets accounting for an astounding 60 percent of digital media time spent in the U.S. The fuel driving mobile’s relentless growth is primarily app usage, which alone makes up a majority of total digital media engagement at 52 percent. In this report we let the numbers and charts do most of the talking, as the story of today’s app landscape is told through the visualization of comScore’s mobile data.
In 1831 Michael Faraday built a small generator that produced electricity, but a generation passed before an industrial version was built, then another 25 years before all the necessary accoutrements for electrification came into place—power companies, neighborhood wiring, appliances (like light bulbs) that required electricity, and so on. But when that infrastructure finally took hold, everything changed—homes, work places, transportation, entertainment, architecture, what we ate, even when we went to bed. Worldwide, electricity became a transformative medium for social practices. In quite
What information are virtual visitors looking for on museum Web sites? This paper is a first step in a larger investigation into the informational value of museum Web sites. Scholars, teachers, students, museums staff, and museum visitors are the main categories of visitors examined in this study. Questions were asked of these museum audiences about their use of museum Web sites, museum databases, and other aspects of virtual visits.
This article reports on a study which used results from 119 scenario–based evaluations of 36 museum Web sites to develop a conceptual framework for analyzing the usability flaws of museum Web sites. It identifies 15 unique dimensions, grouped into five categories, that exemplify usability problems common to many museum Web sites. Each dimension is discussed in detail, and typical examples are provided, based on actual usability flaws observed during the evaluations. The availability of this conceptual framework will help the designers of museum Web sites improve the overall usability of museum
This poster was shared at the 2014 AISL PI meeting, August 20-22. It describes the goals and early (pre-award) work on the GrACE project. This project aims to teach computational thinking and fostering computer science attitude change among middle school students through a procedurally generated puzzle game.
DATE:
TEAM MEMBERS:
Northeastern UniversityGillian SmithCasper Harteveld
Northeastern University will design, test, and study GrACE, a procedurally generated puzzle game for teaching computer science to middle school students, in partnership with the Northeastern Center for STEM Education and the South End Technology Center. The Principal Investigators will study the effect of computer generated games on students' development of algorithmic and computational thinking skills and their change of perception about computer science through the game's gender-inclusive, minds-on, and collaborative learning environment. The teaching method has potential to significantly advance the state of the art in both game-based learning design and yield insights for gender-inclusive teaching and learning that could have broad impact on advancing the field of computer science education. Development and evaluation of GrACE will consist of two, year-long research phases, each with its own research question. The first, design and development, phase will focus on how to design a gender-inclusive, educational puzzle game that fosters algorithmic thinking and positive attitude change towards computer science. The content generator will be created using Answer Set Programming, a powerful approach that involves the declarative specification of the design space of the puzzles. The second phase will be an evaluation that studies, by means of a mixed-methods experimental design, the effectiveness of incorporating procedural content generation into an educational game, and specifically whether such a game strategy stimulates and improves minds-on, collaborative learning. Additionally, the project will explore two core issues in developing multiplayer, collaborative educational games targeted at middle school students: what typical face-to-face interactions foster collaborative learning, and what gender differences exist in how students play and learn from the game. The project will reach approximately 100 students in the Boston area, with long-term goals of reaching students worldwide, once the game has been tested with a local audience. Results of the project will yield a new educational puzzle game that can teach algorithmic thinking and effect attitude change regarding computer science. Through the process of creating a gender-inclusive game to teach computer science, it will provide guidelines for future educational game projects. Beyond these individual project deliverables, it will improve our understanding of the potential for procedural content generation to transform education, through its development of a new technique for generating game content based on supplying educational objectives.
DATE:
-
TEAM MEMBERS:
Northeastern UniversityGillian SmithCasper Harteveld
This research explores how to support collaborative learning practices when science museum visitors employ their own personal mobile devices as Opportunistic User Interfaces (O-UIs) to manipulate a simulation-based museum exhibit. The sophisticated graphical capabilities of modern mobile devices have the potential to distract visitors, a phenomenon known as the heads-down effect. To study the impact of O-UI design on collaboration, a highly-dynamic "complex" O-UI was contrasted against more simplistic, "remote-control" OUI design, in the context of a cancer-treatment simulation. As expected
Digital information and communication technologies (ICTs) are novelty tools that can be used to facilitate broader involvement of citizens in the discussions about science. The same tools can be used to reinforce the traditional top-down model of science communication. Empirical investigations of particular technologies can help to understand how these tools are used in the dissemination of information and knowledge as well as stimulate a dialog about better models and practices of science communication. This study focuses on one of the ICTs that have already been adopted in science
Sage is a robot that has been installed at the Carnegie Museum of Natural History as a full-time autonomous member of the staff. Its goal is to provide educational content to museum visitors in order to augment their museum experience. This paper discusses all aspects of the related research and development. The functional obstacle avoidance system, which departs from the conventional occupancy grid-based approaches, is described. Sage's topological navigation system, using only color vision and odometric information, is also described. Long-term statistics provide a quantitative measure of
DATE:
TEAM MEMBERS:
Illah NourbakhshJudith BobenageSebastien GrangeRon LutzRoland MeyerAlvaro Soto
The Jackprot is a didactic slot machine simulation that illustrates how mutation rate coupled with natural selection can interact to generate highly specialized proteins. Conceptualized by Guillermo Paz-y-Miño C., Avelina Espinosa, and Chunyan Y. Bai (New England Center for the Public Understanding of Science, Roger Williams University and the University of Massachusetts, Dartmouth), the Jackprot uses simplified slot-machine probability principles to demonstrate how mutation rate coupled with natural selection suffice to explain the origin and evolution of highly specialized proteins. The
Museums are excellent locations for testing ubiquitous systems; the Exploratorium in San Francisco offers a unique and challenging environment for just such a system. An important design consideration is how users switch between virtual and physical interactions.
DATE:
TEAM MEMBERS:
Margaret FleckMarcos FridEamonn O'Brien-StrainRakhi RajaniMirjana Spasojevic
This article describes the software architecture of an autonomous, interactive tour-guide robot. It presents a modular and distributed software architecture, which integrates localization, mapping, collision avoidance, planning, and various modules concerned with user interaction and Web-based telepresence. At its heart, the software approach relies on probabilistic computation, on-line learning, and any-time algorithms. It enables robots to operate safely, reliably, and at high speeds in highly dynamic environments, and does not require any modifications of the environment to aid the robot's