Skip to main content

Community Repository Search Results

resource research Media and Technology
This paper provides an analysis of the implementation and the outcomes of Scienza Attiva, an Italian national project for secondary school students, that makes use of deliberative democracy tools to address socio-scientific issues of great impact. The analysis has required a mixed method including surveys of students' pre- and post-project opinions, focus groups and interviews with students and teachers. The results from this evaluation study provide evidence that the project improves students' understanding of socio-scientific issues, strengthens their awareness of the importance of
DATE:
TEAM MEMBERS: Federica Cornali Gianfranco Pomatto Selena Agnella
resource evaluation Media and Technology
This is the final evaluation report for the Skynet Junior Scholars Project from the External Evaluator, David Beer.
DATE:
TEAM MEMBERS: Sue Ann Heatherly David Beer
resource research Media and Technology
SciGirls Strategies is a National Science Foundation–funded project led by Twin Cities PBS (TPT) in partnership with St. Catherine University, the National Girls Collaborative, and XSci (The Experiential Science Education Research Collaborative) at the University of Colorado Boulder’s Center for STEM Learning. This three-year initiative aims to increase the number of high school girls recruited to and retained in fields where females are traditionally underrepresented: technical science, engineering, technology, and math (STEM) pathways. We seek to accomplish this goal by providing career and
DATE:
TEAM MEMBERS: Rita Karl Bradley McLain Alicia Santiago
resource research Media and Technology
Students find meaning and relevance in their learning when they connect lessons to real-world issues and possible career paths. The U.S. Fish and Wildlife Service’s (FWS) Conservation Connect, a freely available video series, connects learners to wildlife, technology, and careers. Videos and supplementary resources are designed to serve middle school youth, but elementary and high school educators—and even FWS retirees—report that they also use the tools. Each episode features a species, a conservation career, and technology that professionals use to study or protect that species and its
DATE:
TEAM MEMBERS: Maria Parisi
resource research Media and Technology
Abstract In 2011, Donna DiBartolomeo and Zachary Clark enrolled in the Arts in Education Program at Harvard Graduate School of Education. Harvard Graduate School of Education is home to Project Zero, an educational research group comprising multiple, independently funded projects examining creativity, ethics, understanding, and other aspects of learning and its processes. Under the guidance of Principal Investigator Howard Gardner and Project Manager Katie Davis, the authors were tasked with developing a methodology capable of observing finegrained, objective detail in complete works of
DATE:
TEAM MEMBERS: Donna DiBartolomeo Zachary Clark
resource project Media and Technology
Developing and maintaining a diverse, innovative workforce in the fields of science, technology, engineering and math (known as STEM) is critical to American competitiveness in the world, but national surveys report a current and future shortage of highly qualified STEM professionals in the US. One problem creating this shortage is that more than half of all college students who declare a major in STEM fields drop out or change their majors in the first two years of their post-secondary education. This problem is particularly acute for first generation college students. If we could increase the STEM degree completion rate by just 25%, we would make up 75% of the additional workforce needed over the next decade.

Our project aims to increase the STEM persistence of first generation college students and focuses on rural students in West Virginia. Project partners including scientists from National Labs, college faculty, local school system staff, informal educators, State Department of Education officials, and West Virginia college students will collaborate to develop summer and academic year activities that support young undergraduates majoring in STEM. Activities that we will pilot include early opportunities to do science research, academic year courses that develop science, math and communication skills, and the formation of Hometown STEM Ambassadors; undergraduate STEM students that encourage younger students back in their hometown schools. We will study the impact of these activities on students' persistence in STEM majors.

Our Project is called FIRST TWO: Improving STEM Persistence in the First Two Years of College (FIRST TWO).

Technical Details:

During the Development Launch Project, partners will create and pilot components of two courses that will confer college credit to students in two and four year schools. Each course will have as its center piece a research and development internship. By the end of the Project Development Pilot, FIRST TWO course modules will be integrated into courses the State, and be transferable between community colleges and four-year schools.

An innovative component of FIRST TWO is the creation of Hometown STEM ambassadors--students who participate in both courses will be prepared to mentor their peers, and also conduct outreach in their home school districts. They will make presentations to hometown K-12 students, and will discuss STEM college readiness issues with local education leaders. We believe reconnecting post-secondary students with their home communities and providing place-based relevance to their STEM education will have a positive impact on their persistence, as well as the added benefit of encouraging K-12 students to envision themselves as future STEM professionals.

FIRST TWO will:

- integrate early experience in STEM internships, online communities of practice and STEM skills development into a discovery-based "principles of research and development" college seminar for first year students;

- sustain engagement through a second service learning course, called STEM Leadership that will develop communication and mentoring skills and produce peer mentors who will mentor younger students, join in the efforts to change the STEM education experience at their schools, and conduct outreach in their hometown communities during the students? second year and third years.

- secure state-wide adoption and transferability of these courses, or course materials, and ultimately scale the program across the Appalachian region and to other states with large rural student populations.

- collaborate with National Labs to determine the feasibility of a National STEM Persistence Alliance partnering National Lab internship programs with 2 and 4-year schools who serve FGC students.

Finally, there are many studies that inquire into the factors that correlate with post-secondary retention in general, and with STEM attrition specifically but few that focus on rural students. FIRST TWO will fully articulate a rigorous educational research project aimed at advancing understanding of the factors affecting rural students' entry into and persistence in STEM career pathways. This research will study the impact FIRST TWO program components make on rural FGC students' persistence in STEM majors. Instruments will be developed and validated that test the components proposed in FIRST TWO interventions. As we scale the program to a larger Alliance, so will the research study scale, providing a unique opportunity to inform the education community about the rural students' experience.
DATE: -
TEAM MEMBERS: Sue Heatherly Karen ONeil Erica Harvey
resource evaluation Media and Technology
National Science Foundation (NSF) awarded an Informal Science Education (ISE) grant, since renamed Advancing Informal STEM Learning (AISL) to a group of institutions led by two of the University of California, Davis’s centers: the Tahoe Environmental Research Center (TERC) and the W.M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES). Additional partner institutions were the ECHO Lake Aquarium and Science Center (ECHO), Lawrence Hall of Science (LHS) at the University of California, Berkeley, and Audience Viewpoints Consulting (AVC). The summative evaluation study was
DATE:
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Nichole Pinkard
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at DePaul University. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Bill Penuel Tamara Sumner Nichole Pinkard
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This media and technology project will scale up Youth Radio's proven model of STEM education through youth-driven multimedia journalism and related app development using the MIT App Inventor. A new Youth News Network (YNN) will implement a nationwide feeder system of youth reporters and educators using the previously developed and proven STEM curriculum. Previous research and evaluation has demonstrated that this model can engage underserved youth and put them in leadership positions in technological innovation. Key deliverables include the YNN STEM Desk that will produce 15-20 STEM-related stories each year; bootcamps (1-3 day workshops) training youth around the country focusing on app development and media links; and new toolkits providing resources to help with app development, data analysis and other STEM-specific skills. Project partners include MIT Media Lab, National Public Radio, Best Buy's Teen Tech Centers, National Writing Project, Computer Clubhouses, and PBS Learning Media among others.

Over the previous eight years, research and evaluation findings had been used to refine the project. These data served as the foundation for this scale-up project. The research conducted by the investigator and the Scholar-in-Residence in this scale-up uses an embedded ethnographic approach that combines field notes, recorded meetings and discussions, media artifacts, etc.--data that is transcribed and coded for indicators of STEM learning and critical computational literacy. The external summative evaluation will build on prior evidence regarding how this unique model engages youth and impacts their skills in STEM related media and technology.
DATE: -
TEAM MEMBERS: Elisabeth Soep Ellin O'Leary Harold Abelson
resource project Media and Technology
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Eric Hamilton Katherine McMillan Priya Mohabir
resource project Media and Technology
This project, a collaboration of teams at Georgia Institute of Technology, Northwestern University, and the Museum of Design Atlanta and the Museum of Science and Industry in Chicago, will investigate how to foster engagement and broadening participation in computing by audiences in museums and other informal learning environments that can transfer to at-home and in-school engagement (and vice versa). The project seeks to address the national need to make major strides in developing computing literacy as a core 21st century STEM skill. The project will adapt and expand to new venues their current work on their EarSketch system which connects computer programming concepts to music remixing, i.e. the manipulation of musical samples, beats and effects. The initiative involves a four-year process of iteratively designing and developing a tangible programming environment based on the EarSketch learning environment. The team will develop three new applications: TuneTable, a multi-user tabletop exhibit for museums; TunePad, a smaller version for use at home and in schools; and an online connection between the earlier EarSketch program and the two new devices.

The goal is to: a) engage museum learners in collaborative, playful programming experiences that create music; b) direct museum learners to further learning and computational music experiences online with the EarSketch learning environment; c) attract EarSketch learners from local area schools to visit the museum and interact with novice TuneTable users, either as mentors in museum workshops or museum guests; and d) inform the development of a smaller scale, affordable tangible-based experience that could be used at homes or in smaller educational settings, such as classrooms and community centers. In addition to the development of new learning experiences, the project will test the hypothesis that creative, playful, and social engagement in the arts with computer programming across multiple settings (e.g. museums, homes, and classrooms) can encourage: a) deeper learner involvement in computer programming, b) social connections to other learners, c) positive attitudes towards computing, and d) the use and recognition of computational concepts for personal expression in music. The project's knowledge-building efforts include research on four major questions related to the goals and evaluation processes conducted by SageFox on the fidelity of implementation, impact, success of the exhibits, and success of bridging contexts. Methods will draw on the Active Prolonged Engagement approach (unobtrusive observation, interviews, tracking-and-timing, data summaries and team debriefs) as well as Participatory Action Research methods.

This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Michael Horn Brian Magerko Jason Freeman