Skip to main content

Community Repository Search Results

resource project Media and Technology
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
DATE: -
TEAM MEMBERS: Michael Horn
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that shows the possibilities of the proposed new type of learning technology, and PI teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and that allows them to answer questions about how people learn, how to foster or assess learning, and/or how to design for learning. This project is building and studying a new type of online learning community. The WeatherBlur community allows kids, teachers, scientists, fishermen/fisherwomen, and community members to learn and do science together related to the local impacts of weather and climate on their coastal communities. Members of the community propose investigations, collect and share data, and learn together. WeatherBlur is designed to be a new form of knowledge-building community, the Non-Hierarchical Online Learning Community. Unlike other citizen science efforts, there is an emphasis on having all members of the community able to propose and carry out investigations (and not just help collect data for investigations designed by expert scientists or teachers). Prior research has demonstrated important structural differences in WeatherBlur from other citizen science learning communities. The project will use social network analysis and discourse analysis to measure learning processes, and Personal Meaning Mapping and embedded assessments of science epistemology and graph interpretation skills to examine outcomes. The measures will be used to explore knowledge-building processes and the scaffolds required to support them, the negotiation of explanations and investigations across roles, and the epistemic features that drive this negotiation process. The work will be conducted using an iterative design-based research process in which the prior functioning WeatherBlur site will be enhanced with new automated prompt and notification systems that support the non-hierarchical nature of the community, as well as tools to embed assessment prompts that will gauge participants' data interpretation skills and epistemic beliefs. Exponential random graph modeling will be used to analyze the social network analysis data and test hypotheses about the relationship between social structures and outcomes.
DATE: -
TEAM MEMBERS: Ruth Kermish-Allen Christine Bevc Karen Peterman
resource project Media and Technology
The primary purpose of the proposed grant is to support the dissemination and institutionalization of a model of educational partnerships among academic medical centers, undergraduate colleges, and local school systems. This model was created under the umbrella of AAMC's Project 3000 by 2000 . With support from SEPA, during 1994-1997 we will consolidate and extend the accomplishments we achieved under our original SEPA, 1991-1994 (SEPA-I). In 1991, the AAMC began Project 3000 by 2000 . The activities included in this proposal support Project 3000 by 2000 , but are not designed to only recruit students for medical school. Minority underrepresentation in medical schools largely is due to the same fundamental problem that causes minority underrepresentation in health-related Ph.D. programs: an insufficient number of minority students receive adequate academic preparation-especially in the sciences-prior to college. The projects proposed here are designed to address this basic problem and hence promote greater racial and ethnic diversity in all of the health sciences. Eight programmatic activities are proposed, five of which were initiated during SEPA I: (1) The annual publication of the Secondary School Science Minority Achievement Registry (S 3 MAR) , a directory of educational programs for minority students interested in the health sciences and a registry of the students participating in them; (2) NNHeSPA News , the quarterly newsletter of the National Network for Health Science Partnerships ( NNHeSPA) ; (4) An update of the Project 3000 by 2000 Technical Assistance Manual (Volume II); (5) Presentations to a wide variety of groups and strategically targeted customized data analysis. New projects include: (6) NNHeSPA On Line!, a computer bulletin board accessible through the Internet to facilitate ongoing communication among precollege, college and graduate health science educators in NNHeSPA ; (7) S 3 MAR Grapevine , a quarterly newsletter for high school stuents listed in the S 3 MAR ; (8) Intensive regional campaigns to promote health science partnerships in California, Texas, and the South-three areas of the country with large minority populations and severe problems of underrepresentation.
DATE: -
TEAM MEMBERS: Herbert Nickens
resource project Media and Technology
Goals: 1) Increase the number of Alaskans from educationally and/or economically disadvantaged backgrounds, particularly Alaska Natives, who pursue careers in health sciences and health professions and 2) Inform the Alaskan public about health science research and the clinical trial process so that they are better equipped to make healthier lifestyle choices and better understand the aims and benefits of clinical research. Objectives: 1) Pre-med Summer Enrichment program (U-DOC) at UAA (pipeline into college), 2) Statewide Alaska Student Scientist Corps for U-DOC, 3) students (pipeline into college), 4) Facility-based Student Science Guide program at Imaginarium Science Discovery Center, 5) Job Shadowing/Mentorship Program for U-DOC students and biomedical researchers, 6) Research-based and student-led exhibit, demonstration, and multi-media presentations, 7) Professional Development for educators, 8) North Star Website.
DATE: -
TEAM MEMBERS: Savina Haywood Ian Van Tets
resource project Media and Technology
In January 2006, the Dolan DNA Learning Center launched its SEPA Phase I project: Inside Cancer, a media-rich internet site that examines the molecular genetic basis of cancer. We now propose a Phase II Project, which will employ a six-part strategy to broadly disseminate the site and evaluate its use as a resource in high school biology and health education. a) A partnership will disseminate the site to 800 secondary science teachers at one-day workshop held at 20 sites nationwide. This cost-effective program will focus on key concepts and relevant teaching standards, and also provide a dedicated base for conducting second-round training and evaluation activities. b) An online Teacher Center will allow teachers to develop custom multimedia lessons based on Inside Cancer materials. Key features will be a Concept Matrix, Lesson Exchange, and Atomizer, which will match content with teaching standards, facilitate a community approach to lesson plan development, and provide a searchable interface of over 3,000 multimedia content "atoms." c) Fellowships will allow three lead faculty to work directly with DNALC staff to develop the Teacher Center and model lesson plans (DNALC Fellows). Eighty workshop alumni will serve as Regional Fellows and receive stipends to conduct second-round training activities reaching 640 additional teachers. d) An annual review will assess fidelity to project objectives and analyze site logs to detect patterns of use. An online survey of 1,500 Inside Cancer users annually will assess differences in site use among teachers, students, science and medical professionals, and the general public. e) A longitudinal evaluation of 1,440 participants in workshops and second-round activities will gauge how teachers use Inside Cancer and the Teacher Center, and how their teaching behavior changes over time. f) A controlled study will compare attitudinal and learning effects among 280 high school students - half of whom use Inside Cancer in their classes an half who don't. Biology and health classes will be selected from a single school district that reflects the ethnic and racial distribution of the U.S. population.
DATE: -
TEAM MEMBERS: David Micklos
resource project Media and Technology
Recent biomedical research has transformed scientific understanding of human biology. But many of these advances haven’t filtered into public awareness, hindering our ability to make good health-related decisions. A new educational program ‒ Biology of Human ‒ will help the public, particularly young people, better understand advances in biomedical research. This innovative, learning research-based science education program is strategically designed to increase awareness of and understanding about new biomedical research developments pertaining to human biology. Biology of Human will provide a sophisticated science education outreach package for students aged 11 to 15 and adults, including parents and educators. The project's goal is to leverage the latest biomedical information and innovations, a dynamic suite of educational and dissemination strategies, and research-driven approach grounded in sociology to broadly educate youth and adults about human biology. A team led by the University of Nebraska State Museum, the Department of Sociology at the University of Nebraska-Lincoln, and the NIH/NCRR-funded Nebraska Center for Virology (a Center of Biomedical Research Excellence) will work with science writers, kids, and educators to complete three specific aims: 1) stimulate interest in and understanding of biomedical research's importance to diverse individuals' health, communities, and environments; 2) establish partnerships among science educators, biomedical researchers, science journalists, and others to create dynamic educational resources focused on biomedical research developments and human biology; and 3) increase youths' interest in biomedical science. Biology of Human will provide adults and youth with several simultaneous, complementary options for learning about how biomedical research has helped us understand human biology including essays, books and blogs; entertaining and scientifically accurate mobile and tablet apps; activities and graphic stories; and a Web site that complements and supports the project's professional development programs. More than 175,000 youth and adults are expected to be directly impacted through this effort.
DATE: -
TEAM MEMBERS: Judy Diamond Julia McQuillan
resource evaluation Media and Technology
The goal of the study was to identify current issues for navigating and finding relevant information; evaluate the look and feel of the website in relation to its main purpose; assess the clarity of language to its audience; determine next steps for improvement. We addressed these goals through an expert review based on a 100+ point usability assessment framework on both desktop and mobile as of 12/4/2014 and informal feedback from 3 novice users ( age range 22-27 years).
DATE:
TEAM MEMBERS: Brigham Young University University of Maryland Jes Koepfler Nidhi Jalwal Victor Yocco
resource evaluation Media and Technology
Intuitive Company researchers and evaluators assessed four components of the DUST Alternate Reality Game for potential reusability: 1) QTE Environment during Collapse, 2) Brain/Health Scanner Mobile App, 3) Microbe Web App, 4) Star Map Web App. We assessed reusability based on five variables (facilitation, user identification, digital access, player type, and timing) along a continuum of informal to formal learning contexts, from museums to after school programs to formal classroom settings. Our assessment revealed that the: 1. QTE Environment during the Collapse is most replayable in its
DATE:
TEAM MEMBERS: Brigham Young University, University of Maryland Jes Koepfler Nidhi Jalwal Victor Yocco
resource project Media and Technology
The long-term goal is to broaden our model program that currently targets African-American populations in the national capital area. The aim of the program is to: a) educate junior and senior high students and elementary school teachers directly; and b) provide opportunities for exploration of health-related sciences for the public at large (via an interactive website) so that topics in the biomedical sciences become "friendly and familiar" rather than the existing stereotype that science is erudite, obtuse, and incomprehensible. Specific objectives: (A) Design hands-on experiences in science laboratories and opportunities to interact with scientists in the setting of a sophisticated research institute; especially target under-represented minorities, students from inner city schools and other local schools where science opportunities may be limited. This will include junior and high school students, elementary school teachers, as well as interactions with Children's Museum and other similar organizations. (B) Set up interactive web-based informatics to include: i) a system where high school students could refine the question they are posing for science projects by discussing it with a professional scientist; ii) a general "ask-the-expert" site for science and health issues; iii) a reference site containing the detailed experimental protocols for student experiments; and iv) an interactive resource to aid teachers throughout the U.S. to establish contacts with scientists. The goal of this project is to extend the reach of current health science programs that are targeted to females, African-American junior and senior high school students, and elementary school teachers, located in the Washington, D.C., metropolitan area. The project includes laboratory apprenticeships, student mentoring, and an interactive website to help students and teachers establish contact with scientists nationwide.
DATE: -
TEAM MEMBERS: Marti Jett Debra Yourick
resource research Media and Technology
Mobile technology can be used to scaffold inquiry-based learning, enabling learners to work across settings and times, singly or in collaborative groups. It can expand learners’ opportunities to understand the nature of inquiry whilst they engage with the scientific content of a specific inquiry. This Sharples et al. paper reports on the use of the mobile computer-based inquiry toolkit nQuire. Teachers found the tool useful in helping students to make sense of data from varied settings.
DATE:
TEAM MEMBERS: Heather King
resource research Media and Technology
In the last two years SISSA Medialab designed, tested and evaluated two projects aiming at empowering children (in one case) and teenagers (in the other) to act as science journalists in order to promote a personal, critical attitude towards science and technology. The two groups produced a paper magazine and a blog, respectively, in a participatory process, in which adults acted as facilitators and experts on demand, but the youths were the leaders and owners of the products. Special care was taken to ensure inclusiveness, by involving in the project children and teenagers from any social
DATE:
TEAM MEMBERS: Paola Rodari Simona Cerrato Anna Susteric
resource project Media and Technology
Educators from K-12 and higher education are collaborating on a new school of the future projects involving humanoid robots and other forms of robots and student and teacher productivity tools. We are working in the areas of STEAM Plus. (science, technology, engineering, visual and performing arts, mathematics, computer languages and foreign languages) All team members will share their action research results through a traveling exhibition to all twelve public libraries in the city of Long Beach, California. Kids Talk Radio through its Backpack Science, Journalism, and Backpack Robotics programs will create video and audio podcasts of the action research and share findings over the Internet with schools, libraries and museums around the world.
DATE: -
TEAM MEMBERS: Super School Software Bob Barboza Walter Martinez