Skip to main content

Community Repository Search Results

resource research Public Programs
Positive youth development and youth organizing are strengths-based approaches to the lives, needs, and contributions of young people (Damon & Gregory, 2003). These approaches privilege the voices of youth as they engage with issues in their communities and challenge institutions to respond. Few studies, however, have explored the role of positive youth development and youth organizing initiatives among immigrant youth of color. The challenging terrain of modern urban life requires these youth to navigate the political, economic, and legal demands confronted by their families; to understand
DATE:
TEAM MEMBERS: Anthony de Jesus Sofia Oviedo Scarlett Feliz
resource evaluation Public Programs
The University of Minnesota Extension (UME) contracted Garibay Group to conduct a summative evaluation of the Driven to Discover program (often referred to as D2D by youth participants and adult leaders) to assess how adult leaders in Informal Science Education (ISE) settings used the curriculum and citizen science projects as conduits to engage youth in scientific inquiry.
DATE:
TEAM MEMBERS: Karen Oberhauser Cecilia Garibay
resource evaluation Public Programs
This is the final evaluation report on the Laurel Clark Earth Camp Experience, a multi-component program to incorporate NASA satellite data into summer field programs for teens, environmental and water education for teachers, environmental after-school clubs and Earth Science exhibits at the Arizona- Sonora Desert Museum.
DATE:
TEAM MEMBERS: Debra Colodner
resource research Public Programs
Afterschool programs have emerged as a dynamic and vibrant setting for innovative STEM education and there has been rapid growth in this field over the past few years. Although many of the statewide afterschool networks are collecting data from afterschool providers in their states on afterschool STEM programming, this report offers the first national look at availability and access to afterschool STEM programs and parental attitudes and expectations for such programs. The America After 3PM survey is the most comprehensive study of how school-age children in the United States spend their after
DATE:
TEAM MEMBERS: Afterschool Alliance
resource project Media and Technology
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
DATE: -
TEAM MEMBERS: Beth McGinnis-Cavanaugh Glenn Ellis Alan Rudnitsky Isabel Huff
resource project Public Programs
Through the Scientists for Tomorrow pathways project, The Science Institute at Columbia College in Chicago will test a model for preparing non-science major, pre-service elementary school teachers to deliver three ten-week informal science education modules to youth in after school programs. The initiative will bring engineering concepts, environmental science, and technology to approximately 240 urban Chicago youth (ages 10-14 years old) and their families. The Science Institute will partner with eight minority serving community based organizations and the Museum of Science and Industry, the Field Museum, and the Garfield Park Conservatory Alliance to develop and implement all aspects of the program. The goals of the program are two-fold. First, the project will develop and implement a high-quality STEM based afterschool program for under-represented youth in STEM. Second, the professional development and experience implementing the curriculum with youth in the local communities and within informal science education (ISE) institutions will extend and enrich the pre-service teachers\' STEM content and pedagogical knowledge base and better prepare them to teach science in formal and informal settings. Thirty teachers will receive specialized professional development through a seminar, course, and other support mechanisms in order to best support the implementation of the modules, while building their STEM content expertise, confidence, and pedagogical knowledge. Each module has a different STEM content focus: alternative energy (fall), the physics and mathematics of sound and music (winter), and environmental science (spring). At the end of each module, a culminating youth-led presentation will be held at one of the partnering Chicago museums. Youth will be encouraged to participate in all three modules. The formative evaluation will be conducted by the Co-Principal Investigators. Pre and post assessments, artifact reviews, and interviews will be used for the summative evaluation, which will be conducted by an external evaluator at the Illinois Institute of Technology. The project deliverables include: (a) a teacher training program, (b) an after school curriculum, and (c) media tools - DVDs, website. Over the grant period, the project intends to reach 120 youth each year, over 100 family and community members, and 30 teachers. The larger impact of this project will be the development of a scalable model for bringing relevant STEM content and experiences to youth, their families, and non-science major pre-service teachers. As a result of this project, a cadre of pre-service teachers will have: (a) increased their STEM content knowledge, (b) gained experience presenting STEM content in informal settings, (c) learned effective approaches to deliver hands-on STEM content, and (d) learned to use museum and other ISE resources in their teaching. In fact, after the grant period nearly half of the teachers will continue to work at the centers as part-time instructors, fully supported by the partnering community centers.
DATE: -
TEAM MEMBERS: Constantin Rasinariu Marelo Caplan Virginia Lehmkuhl-Dakhwe
resource project Media and Technology
In Defense of Food (IDOF) is a media and outreach project based on Michael Pollan's best-selling book of the same title. Through the lens of food science, IDOF is designed to engage diverse audiences in learning about: (1) how science research is conducted, (2) how research findings are used in media, marketing, and public policy, and (3) how to apply food science research in everyday life. IDOF will be created by Kikim Media, an independent production company, broadcast and distributed by PBS and supported by an extensive outreach campaign and interactive website. The project's educational materials will be developed, in part, by the Teacher's College at Columbia University's Center for Food and Nutrition, with dissemination supported by the Coalition for Science After School and by Tufts University's Healthy Kids Out of School initiative, which involves nine of the leading out of school time (OST) organizations, such as Girl Scouts USA, and the National Urban League. The project advisory committee includes highly respected researchers in food, nutrition, and health. IDOF will use an integrated strategy of learning resources, combining a television documentary with online/social media, community outreach, and youth activities. Knight Williams Research Communications will conduct formative and summative evaluation of all major components of the project. The results will advance the informal science community's understanding of how the combination of a documentary with outreach, website/social media, and afterschool activities impacts motivation and learning. The evaluation study will pay special attention to the degree to which participation in the community events, social media/website, and afterschool activities motivates deeper or extended engagement with the subject. Project evaluation results and educational resources will be widely disseminated to the informal science community. IDOF includes a two-hour documentary film that will be produced in both English and Spanish; a community-level outreach campaign focused on reaching underserved audiences who may not watch public television; a set of activities for use in afterschool programs, youth programs and schools; and an interactive and content-rich website with tightly integrated social media tools. IDOF will be nationally broadcast by PBS; the Spanish-language version of IDOF will be broadcast by Vme Television. The ambitious IDOF educational materials and outreach campaign, combined with interactive web and social media, will reach large and diverse audiences. The intended impacts on audiences include increased knowledge and understanding of the scientific process by learning what food scientists do, what techniques they use, and how scientists arrive at their conclusions; the development of critical thinking skills audiences can use when evaluating messages about food and nutrition in media and advertising and when making decisions about what food to buy and eat; and becoming active learners and consumers regarding food. Evaluation results will be widely disseminated to science media producers and the informal science community via professional publications and presentations at conferences. The ultimate value of the In Defense of Food documentary and learning initiative will be to enhance public understanding of the crucial importance of science in people's everyday lives and in shaping dozens of daily decisions.
DATE: -
TEAM MEMBERS: Michael Schwarz
resource project Media and Technology
Iridescent is a not-for-profit company that develops and implements informal science and engineering experiences for students by facilitating the translation of the work that scientists and engineers do in a way that makes that work accessible to families. The proposal expands the Iridescent outreach activities funded by the Office of Naval Research, to provide a blended combination of in-person and online support to the families of underrepresented populations. The project is producing twenty videos of scientists and engineers presenting their research that are closely aligned with one hundred scientific inquiry and engineering design-based experiments and lesson plans. These digital resources, collectively called the Curiosity Machine, provide opportunities for parents and children to engage in scientific inquiry and engineering design in multiple face-to-face and online environments, including mobile technologies. The evaluation findings from this project provide a model of how to engage STEM education practitioners, teachers and online communities, to substantively connect underserved communities, in both informal and more formal learning environments to develop experiences with engineering design and to improve students' perspectives about and motivations to prepare for STEM careers. The Curiosity Machine portal is designed to present scientists and engineers explaining the work that they do in a way that makes it accessible to parents and students. Iridescent is working at three sites across the country in South Los Angeles, the South Bronx in New York City, and San Francisco. Students and their families have multiple access points to the science and engineering videos and materials through after school activities, Family Science Nights and summer camps. The project is piloting the use of electronic badges, similar to those offered in the Boy and Girl Scouts as a mechanism to enhance the engagement and persistence of students in the online activities. The project is developing ways to evaluate student engagement and performance through the analysis of the products that students submit online in response to particular science and engineering challenges. Students can also gain extra credit at school for their participation in the Curiosity Machine activities. The materials that the Curiosity Machine activities and challenges use are those that are commonly available to families, and the project provides access to mobile technology to facilitate participation by families. Student access to out of school science and engineering experiences is limited by the resources in terms of time and availability science centers have available. This project develops the resources and tools to bridge the in-school and out of school activities for students through the use of videos and online participation in ways that expand the opportunity of students from underserved populations to continue to engage in substantive science and engineering experiences beyond what they might get during an intermittent visit to a science center. The research and evaluation that is part of this study provides information about how new forms of extrinsic motivation might be used to support student engagement and persistence in learning about science and engineering.
DATE: -
TEAM MEMBERS: Tara Chklovski
resource project Media and Technology
The Young Developers program is an after school program conceptualised and run by The P-STEM Foundation. It introduces computer programming and design concepts to high school age students from South African historically disadvantaged communities, where the majority of students have had little or no interaction with computers. Young Developers uses Self Organised Learning Methodology and involves introducing a series of increasingly complex challenges / questions that the participants have to collaboratively solve. The first module is run in Scratch with the final objective being the creation of a racing car game. The second module is run in Python using Turtle graphics with an objective of creating an animation. This program runs as pods in each of the communities that the P-STEM foundation works in. Each pod has up to 30 teens from the age of 10 to 18. Each pod is peer led and peer driven, and the pace of learning is determined by the participants. In 2015, we would also like to introduce national competitions which pods participate in against other pods.
DATE: -
TEAM MEMBERS: The P-STEM Foundation Vari Mureriwa
resource evaluation Media and Technology
Rockman et al (REA), a San Francisco-based research and evaluation firm, conducted the external evaluation for Youth Radio's DO IT! program, which was funded by the National Science Foundation. Building upon Youth Radio's previous Science and Technology Program, the DO IT! initiative consisted of three primary components that promoted STEM (science, technology, engineering, and mathematics) learning by training underserved youth in cutting-edge digital technologies: (1) Brains and Beakers: Young people hosted a line-up of investigators and inventors for demo-dialogues at Youth Radio's studios
DATE:
TEAM MEMBERS: Rockman et al | Youth Radio Kristin Bass Julia Hazer
resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy
resource evaluation Media and Technology
Internet Community of Design Engineers (iCODE) program, which took an innovative approach to structuring self-directed learning –– using a collaborative on-line environment to facilitate hands-on activities, was a three year program led by the University of Massachusetts Lowell and Machine Science Inc., Cambridge. The overall objective of this program, which involved after-school and summer sessions and was funded by NSF’’s Innovative Technology Experiences for Students and Teachers (ITEST) Program, was to increase the likelihood that participating middle school and high school students will
DATE:
TEAM MEMBERS: Rucha Londhe Colleen Manning Rachel Schechter Laura Houseman Irene Goodman