In partnership with the Digital NEST, students engage in near to peer learning with a technical tool for the benefit of a nonprofit that tackles issues the youth are passionate about. Youth build first from an 'internal’ Impactathon, to planning and developing an additional Impactathon for a local partner and then traveling to another partner elsewhere in the state. Participants range from 14 to 24 from UC Santa Cruz students to middle schoolers from Watsonville and Salinas.
This poster was presented at the 2019 AISL Principal Investigators Meeting.
This poster was presented at the 2019 NSF AISL Principal Investigators meeting.
The poster describes the Rural Activation and Innovation Network, in which four Arizona regions were selected for their uniqueness in geography and demographics to provide insights about barriers and solutions to implementing ISE experiences in rural communities.
This pilot study will examine the effectiveness of an innovative applied social change, community and technology based program on marginalized youths' access, interest, efficacy and motivation to learn and engage in digital technology applications. Using stratified near-peer and peer-to-peer mentoring approaches, the pilot builds on extant literature that indicates that peer-supported hands-on mentoring and experiences can alleviate some barriers to youth engagement in digital technologies, particularly among underrepresented groups. In this project, undergraduate students will mentor and work collaboratively with high school youth primarily of Hispanic descent and community-based organizations to develop creative technology-based solutions to address social issues and challenges within their local communities, culminating in events called Impactathons. These community-hosted local and state-wide events set this pilot project apart from similar work in the field. The Impactathons not only provide a space for intellectual discourse and problem-solving among the undergraduate-youth-community partners but the Impactathons will also codify expertise from scientists, social scientists, technologists, community leaders, and other stakeholders to develop technology-based solutions with real world application. If successful, a distal outcome will be increased youth interest in digital technologies and related fields. In the short term, favorable findings will provide preliminary evidence of success and lay the foundation for a more extensive study in the future.
This pilot project is a collaboration between the Everett Program, a student-led program for Technology and Social Change at the University of California Santa Cruz - a Hispanic Serving Institution - and the Digital NEST, a non-profit, high-tech youth career development and collaboration space for young people ages 14-24. Through this partnership and other recruitment efforts, an estimated 70-90 individuals will participate in the Impactathon pilot program over two years. Nearly two-thirds of the participants are expected to be undergraduate students. They will receive extensive training in near-peer and peer-to-peer mentoring and serve as mentors for and co-innovation developers with the high school youth participants. The undergraduates and youth will partner with local community organizations to identify a local social challenge that can be addressed through a technology-based solution. The emergent challenges will vary and could span the spectrum of STEM and applied social science topics of interest. Working in informal contexts (i.e., afterschool. weekend), the undergraduate-youth-community partner teams will work collaboratively to develop practical technology-based solutions to real world challenges. The teams will convene three times per year, locally and statewide, at student and community led Impactathons to share their work and glean insights from other teams to refine their innovations. In parallel, the research team will examine the effectiveness of the Impactathon model in increasing the undergraduate and youths' interest, motivation, excitement, engagement and learning of digital technologies. In addition to the research, the formative and summative evaluations should provide valuable insights on the effectiveness of the model and its potential for expansion and replication.
The project is co-funded by the Advancing Informal STEM Learning (AISL) Program and STEM +C. The AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. STEM + C focuses on research and development of interdisciplinary and transdisciplinary approaches to the integration of computing within STEM teaching and learning for preK-12 students in both formal and informal settings.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Innovations in Development project will develop a collaborative program to connect and prepare researchers from divergent disciplines to communicate science to publics of all ages in three distinct informal environments: pop-ups at community events, experiential learning with problem solving events for youth, and presentations at a science museum. It will study the effects of this program on the identity and motivations of STEM researchers and evaluate the short and medium-term outcomes for public audiences. Project partners include, The STEAM Factory, OHI/O Informal Learning in Tech Program, and the Center of Science and Industry (COSI) all located in Columbus, Ohio.
The primary goals of this project are as follows. 1) Develop a collaborative program that connects and prepares researchers from divergent disciplines to creatively and effectively communicate science to people of all ages. 2) Evaluate the short and medium-term learning outcomes across different informal learning settings. 3) Study the effect of this collaborative program on the motivations and identify of the researchers. The specific research question is: In what ways do researchers motivations and identities further develop because of these collaborative experiences with divergent perspectives? A mixed method approach will be used. Data will be collected and analyzed from 3 cohorts of researchers who implement programs in different informal learning settings. A series of pre- and post interviews with scientists will be designed to answer the research question above. Interviews will be grounded in self-determination theory. Later reflective surveys will serve as triangulation for the data.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Sathya GopalakrishnanJustin MeyerRachel KajfezArnab Nandi
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The uses of technologies in emergency management and public safety are emerging rapidly, but it could take years for school STEM curricula to catch up with the technologies that are already being deployed in the field. Informal learning environments, such as Teen Science Cafés, provide a compelling venue for youth learning about rapidly-developing STEM fields such as technology. The floods and devastation caused by Hurricane Harvey provide a timely learning opportunity for them. This project, in addition to developing new materials for learning about technologies, will provide much-needed baseline research on teens' understanding of technology, technology careers, and emergency preparedness. Leveraging the robust platform of the NSF-funded Teen Science Café, the Maine Mathematics and Science Alliance will build upon its existing partnership with Science Education Solutions to develop and implement a package of educational activities, tools, and resources for a Teen Science Café that is focused on community flood events and response, using Hurricane Harvey as a model and case study. The materials will focus on advances in sensor technology, data visualization, social media, and other mobile communication apps used to detect, monitor and respond to flooding and natural disasters. The package of materials will be embraced by 20 sites in Maine. The goal is to engage at least 600 youth in themed Cafés focusing on how technology was used to respond to Harvey and is being used to manage and respond to flooding more generally. An important related goal is to conduct baseline research on what teens currently know about the flood-related technologies, as well as what they learn about it from this experience derived from recent floods in Texas, Florida, and the Caribbean islands.
A research goal of our work was to collect baseline information on teens’ level of knowledge about the role of technology in responding to a variety of natural disasters. To our knowledge, the field has not developed measures of knowledge of this increasingly important domain. We developed a quick and easy-to-administer 10-item multiple-choice measure, which we presented as a “trivia game” to be done sometime during the 90-minute Café. We did not track pre- to post-café changes in knowledge, because the Cafés emphasized very different pieces of technology as well as different types of natural disasters. Rather, we wished to establish a starting point, so that other researchers who are engaged in ERT efforts with teens have both an instrument and baseline data to use in their work.
A sample of 170 youth completed the questionnaire. The average correct response rate was 4.2 out of 10, only slightly higher than the chance of guessing correctly (3 out of 10). This suggests teens have limited baseline knowledge of Emergency Response Technology and our Cafés therefore served an important purpose given this lack of knowledge. Indeed, for half of the questions at least one incorrect answer was selected more often than the correct answer! Note that there were no statistically significant correlations between age and gender and rates of correct answers.
Three things are clear from our work: 1) Youth need and want to know about the vital roles they can play by learning to use technology in the face of natural disasters; 2) Teens currently know little about the uses of technology in mitigating or responding to disasters; and 3) Teen Science Cafés provide a timely and relatively simple way of sparking interest in this topic. The project showed that it is possible to empower youth to become involved, shape their futures, and care for their communities in the face of disasters. We plan to continue to expand the theme of Emergency Response Technology within the Teen Science Café Network. Reaching teens with proactive messages about their own agency in natural disasters is imperative and attainable through Teen Science Cafés.
Out-of-school settings promise to broaden participation in science to groups that are often left out of school-based opportunities. Increasing such involvement is premised on the notion that science is intricately tied to “the social, material, and personal well-being” of individuals, groups, and nations—indicators and aspirations that are deeply linked with understandings of equity, justice, and democracy. In this essay, the authors argue that dehistoricized and depoliticized meanings of equity, and the accompanying assumptions and goals of equity-oriented research and practice, threaten to
This CAISE report is designed to track and characterize sector growth, change and impact, important publications, hot topics/trends, new players, funding, and other related areas in Informal STEM Education (ISE) in 2017. The goal is to provide information and links for use by ISE professionals, science communicators, and interested stakeholders who want to discover new strategies and potential collaborators for project and proposal development. Designed as a slide presentation and divided into sectors, it can be used modularly or as a complete report. Each sector reports on research, events
This NSF INCLUDES Design and Development Launch Pilot is to expand the Navajo Nation Math Circle model to other sites, and to develop and launch a network of math circles based on the NNMC model. The Navajo Nation Math Circle model is a novel approach to broadening the participation of indigenous peoples in mathematics that, ultimately, seeks to improve American Indian students' attitudes towards mathematics, persistence with challenging problems, and grades in math courses. Navajo Nation Math Circles bring teachers, students, and mathematicians together to work collaboratively on challenging, but meaningful and fun, math problems. Through this NSF INCLUDES project, additional math circles across the Navajo Nation will be launched and a mirror site in Washington State serving additional tribes (such as Puyallup, Muckleshoot, Tulalip, and Stillaguamish) will be established.
Originating approximately a century ago in Eastern Europe as a means to engage students in mathematical thinking, math circles bring teachers, students, and math professionals together to work collaboratively on challenging, but relevant and interesting, math problems. Navajo Nation Math Circles, established math circles in various Navajo Nation communities, are the foundation of this INCLUDES project. One goal of this effort is to launch a network with the capacity to support the replication and adaption of math circles in multiple sites as an innovative strategy for encouraging indigenous math engagement through culturally enriched open-ended group math explorations. In addition, the Navajo Nation Math Circle model will be expanded to new math circles in the Navajo Nation, as well as in Washington State to serve additional tribes. Cells in the network will implement key elements of the Navajo Nation Math Circle model, adapting them to their particular contexts. Such elements include facilitation of open-ended group math explorations, incorporating indigenous knowledge systems; a Mathematical Visitor Program sending mathematicians to schools to work with students and their teachers; inclusion of mathematics in public festivals to increase community mathematical awareness; a two-week summer math camp for students; and teacher development opportunities ranging from workshops to immersion experiences to a mentoring program pairing teachers with mathematicians.
DATE:
-
TEAM MEMBERS:
David AucklyHenry FowlerJayadev Athreya
The National Ocean Sciences Bowl (NOSB), managed by The Consortium for Ocean Leadership, provides enriched science education and learning through a nationally recognized and highly acclaimed academic competition that increases high school students’ knowledge of the marine sciences, including the science disciplines of biology, chemistry, physics, and geology. The NOSB addresses a national gap in environmental and Earth sciences in K-12 education by introducing high school students to and engaging them in ocean sciences, preparing them for careers in ocean science and other science, technology, engineering and mathematics (STEM). Currently, there are 25 regions in the U.S. that compete in the NOSB, each with their own regional competitions. The regional competitions are coordinated by the Regional Coordinators, who are typically affiliated with a university in their region. Each year approximately 2,000 students from 300 schools across the nation compete for prizes and a trip to the national competition. The goal of this organization is to increase knowledge of the ocean among high school students and, ultimately, magnify the public understanding of ocean research. Students who participate are eligible to apply for the National Ocean Scholar Program.
The National Ocean Sciences Bowl (NOSB) is a nationally recognized high school academic competition. NOSB provides a forum for talented students to excel in science and math and introduces team members, their teachers, schools and communities to ocean sciences as an interdisciplinary field of study and a possible future career path. The program operates within a supportive ocean science learning community that involves the research community in pre-college education. Its focal point is a national competition that expands high school students' knowledge of the ocean and career pathways in science, technology, engineering and mathematics. The program's goals are to: (1) cultivate environments which develop knowledgeable ocean stewards; (2) foster the use of the ocean as an interdisciplinary vehicle to teach science and mathematics; (3) reach out to and support the involvement of underrepresented and geographically diverse communities in the ocean sciences; and (4) provide students with interactive education and career opportunities that develop critical thinking and workforce development skills.
The National Ocean Sciences Bowl (NOSB) is a nationally recognized high school academic competition that provides a forum for talented students to excel in science, mathematics and technology and introduces team members, their teacher/coaches, schools and communities to ocean sciences as an interdisciplinary field of study and a possible future career path. Established by the Consortium for Oceanographic Research and Education in 1998 (the Year of the Ocean), the program operates within a supportive learning community framework that involves the ocean research community in pre-college education and stimulates broad interest in and excitement about science and the oceans. The basic model for NOSB is that of a two-tiered timed competition in which pairs of four-student teams answer multiple-choice, short-answer and critical thinking questions within multiple categories related to the oceans. Each fall, over 400 participating high schools prepare their teams for 25 regional ocean sciences bowl competitions held across the United States in February and early March. Winners of these Regional Bowls advance to the national finals in late April. The current structure layers a rich array of year-round academic elements onto the basic competition framework and offers a range of program enhancements including summer internships and scholarships for NOSB alumni and opportunities for teacher professional development. Four regional bowls currently receive additional funding to expand recruitment efforts and provide mentoring and field trip experiences for students from racial, ethnic and economic groups underrepresented in the ocean sciences. CORE proposes to continue to administer and manage the National Ocean Sciences Bowl for the next five years (April 2007-March 2012). Funds are requested to add two new sites and expand the diversity initiative. To improve the credentials of the nation's teachers and informal educators, the proposal seeks funding for coach and regional coordinator professional development including a focus on the fundamental principles and concepts of ocean literacy recently developed by the ocean education community. An additional new element is a longitudinal study of educational and career paths that will assess the role that the program plays in encouraging talented students to enter the pipeline into ocean science careers and STEM (Science, Technology, Engineering and Mathematics) professions. By supporting and promoting the program's unique educational and experiential opportunities, all NOSB partners and sponsors contribute to helping our nation better prepare K-12 students in science and technology and identify and cultivate future scientists and technical experts.
The Art of Science Learning, Phase 2 was an NSF-funded research and development project to investigate the value of incorporating arts-based learning techniques in STEM-related group innovation processes. The project team created a new, arts-infused innovation curriculum in consultation with leading national practitioners in the arts, creativity, and innovation, then deployed that curriculum in “innovation incubators” in San Diego, Chicago, and Worcester (Mass.) in partnership with informal STEM institutions in those cities. At each incubator, diverse members of the public (from high school
DATE:
TEAM MEMBERS:
Peter LinettSteve ShewfeltNicole BaltazarNnenna OkekeDreolin FleisherEric LaPlantMadeline SmithChloe Chittick PattonSarah LeeHarvey Seifter