Life on the Edge is a traveling exhibition focused on educating children ages 8-14 and their families about how understanding Earth’s extreme environments helps us search for life in space. Created by Sciencenter in Ithaca, NY, the big idea of the exhibition is: “our exploration of extreme environments expands our understanding of life on Earth and the possibilities for life in our solar system and beyond.” Through five unique exhibit sections, the exhibition offers visitors information, activities, and questions focused on scientific exploration and discovery, life in space, and the origins
The Cincinnati Museum Center will develop a permanent exhibition to showcase its invertebrate paleontology collection and develop related educational programming that builds on a strong commitment to gender equity. Using focus groups, prototypes, surveys, and feedback from existing programs, the museum will incorporate community input from key audiences into the design of the 4,800 square-foot immersive gallery, which will blend science, history, and technology. The museum will engage external designers to create schematic and final exhibit designs. The museum will develop and test related educational programs for families and students, with a special focus on engaging girls ages 7 to 14 in STEM activities.
The Museum of Science in Boston, Massachusetts is one of the world’s largest science centers and the most visited cultural institution in New England. Located in Science Park, a piece of land that spans the Charles River, the museum is conveniently situated close to Boston and Cambridge. The museum has more than 700 interactive exhibits and a number of live presentations offered daily. One of these daily shows include live animal presentations, where museum visitors can learn more about some of the many animals that the museum cares for in its live animal center. An evaluation of these live
DATE:
TEAM MEMBERS:
Sarah RosenthalKristina OhlSadia Sehrish IslamMaría José Brito Páez
The Maryland Science Center (MSC), in collaboration with Johns Hopkins University (JHU), the University of Maryland, Baltimore (UMB), and Morgan State University (MSU), has sought the support of the National Institutes of Health SEPA (Science Education Partnership Award) Program to develop "Cellular Universe: The Promise of Stem Cells," a unique exhibition and update center with related programs that highlight the most current science in cell biology and stem cell research. Visitor surveys have shown that science museum visitors are very interested in learning about stem cell research, but know little about the science of stem cells or cell biology, which form the basis of stem cell research. The goal of this project is to help visitors learn about advances in cell biology and stem cells so that they will make informed health-related decisions, explore new career options, and better understand the role of basic and clinical research in health advances that affect people's lives. Topics to be covered include the basic biology of cells, the role of stem cells in human development, current stem cell research and the clinical research process. This exhibition will also address the controversies in stem cell research. Our varied advisory panel, including cell biologists, physiologists, adult and embryonic stem cell researchers and bioethicists, will ensure the objectivity of all content. "Cellular Universe: The Promise of Stem Cells" will be a 3,500 square-foot exhibition to be planned, designed and prototyped in Fall 2006-Winter 2009, and installed in MSC's second-floor human body exhibition hall in Spring 2009. This exhibition will build on the successful model of "BodyLink," our innovative health science update center funded by a 2000 SEPA grant (R25RR015602) and supported by partnerships with JHU and UMB.
This project engages families in engineering design challenges through a sustainability and biomimicry lens. Families advance their engineering proficiencies while learning from nature to create a livable future.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
This front-end evaluation study is part of Designing Our Tomorrow: Mobilizing the Next Generation of Engineers, a five-year project (2018–2023) led by the Oregon Museum of Science and Industry (OMSI) with the support of the National Science Foundation (NSF, DRL-1811617) and project partners: Adelante Mujeres, the Biomimicry Institute, and the Fleet Science Center. The Designing Our Tomorrow (DOT) project seeks to promote and strengthen family engagement and engineering learning via compelling exhibit-based design challenges, presented through the lens of sustainable design exemplified by
American Indian and Alaska Native communities continue to disproportionately face significant environmental challenges and concerns as a predominately place-based people whose health, culture, community, and livelihood are often directly linked to the state of their local environment. With increasing threats to Native lands and traditions, there is an urgent need to promote ecological sustainability awareness and opportunities among all stakeholders within and beyond the impacted areas. This is especially true among the dozens of tribes and over 50,000 members of the Coast Salish Nations in the Pacific Northwest United States. The youth within these communities are particularly vulnerable. This Innovations in Development project endeavors to address this serious concern by implementing a multidimensional, multigenerational model aimed at intersecting traditional ecological knowledge with contemporary knowledge to promote: (a) environmental sustainability awareness, (b) increased STEM knowledge and skills across various scientific domains, and (c) STEM fields and workforce opportunities within Coast Salish communities. Building on results from a prior pilot study, the project will be grounded on eight guiding principles. These principles will be reflected in all aspects of the project including an innovative, culturally responsive toolkit, curriculum, museum exhibit and programming, workshops, and a newly established community of practice. If successful, this project could provide new insights on effective mechanisms for not only promoting STEM knowledge and skills within informal contexts among Coast Salish communities but also awareness and social change around issues of environmental sustainability in the Pacific Northwest.
Over a five-year period, the project will build upon an extant curriculum and findings codified in a pilot study. Each aspect of the pilot work will be refined to ensure that the model established in this Innovations and Development project is coherent, comprehensive, and replicable. Workshops and internships will prepare up to 200 Coast Salish Nation informal community educators to implement the model within their communities. Over 2,500 Coast Salish Nation and Swinomish youth, adults, educators, and elders are expected to be directly impacted by the workshops, internships, curriculum and online toolkit. Another 300 learners of diverse ages are expected to benefit from portable teaching collections developed by the project. Through a partnership with the Washington State Burke Natural History Museum, an exhibit and museum programming based on the model will be developed and accessible in the Museum, potentially reaching another 35,000 people each year. The project evaluation will assess the extent to which the following expected outcomes are achieved: (a) increased awareness and understanding of Indigenous environmental sustainability challenges; (b) increased skills in developing and implementing education programs through an Indigenous lens; (c) increased interest in and awareness of the environmental sciences and other STEM disciplines and fields; and (d) sustainable relationships among the Coast Salish Nations. A process evaluation will be conducted to formatively monitor and assess the work. A cross cultural team, including a recognized Coast Salish Indigenous evaluator, will lead the summative evaluation. The project team is experienced and led by representatives from the Swinomish Indian Tribal Community, Oregon State University, Garden Raised Bounty, the Center for Lifelong STEM Learning, the Urban Indian Research Institute, Feed Seven Generations, and the Burke Museum of Natural History and Culture.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
The Museum of Science, Boston’s Research and Evaluation Department conducted a summative evaluation of The Hall of Human Life (HHL) exhibition. This 9,700 square foot exhibition is geared towards older children and adults. It is focused on human biology and human health with the main message, “Human beings are changing in a changing environment.” Visitors are able to use their own bodies and behaviors to understand biological mechanisms. Unique to this exhibition, visitors are able to use scannable wristbands to record and compare personal data with other Museum visitors to learn about their
Charles Darwin is largely unknown and poorly understood as a historical figure. Similarly, the fundamental principles of evolution are often miss-stated, misunderstood, or entirely rejected by large numbers of Americans. Simply trying to communicate more facts about Darwin, or facts supporting the principles of evolution is inadequate; neither students nor members of the public will care or retain the information. On the contrary, building facts into a one-on-one conversational narrative creates an memorable opportunity to learn. Here, we create a digital-media, self-guided question and answer
DATE:
TEAM MEMBERS:
David J. LampeBrinley KantorskiJohn Pollock
The connections among neuroscience, educational research, and teaching practice have historically been tenuous (Cameron and Chudler 2003; Devonshire and Dommett 2010). This is particularly true in public schools, where so many issues are competing for attention—state testing, school politics, financial constraints, lack of time, and demands from parents and the surrounding community. Teachers and administrators often struggle to make use of advances in educational research to impact teaching and learning (Hardiman and Denckla 2009; Devonshire and Dommett 2010). At the Franklin Institute, we
This is a report of a project titled ‘The Contribution of Natural History Museums to Science Education’, funded by the Wellcome Trust and ESRC with a Phase 1 grant from the Science Learning+ initiative. The project explored how Natural History Museums (NHMs) and schools can complement one another to maximise learning among school-age learners, and researched the long-term benefits to learning and engagement with science that NHMs can provide. During the course of our work, our team, which consisted of museum professionals and academics in the UK and the US, worked in the UK and the US with
The Smithsonian’s National Museum of Natural History (NMNH) contracted Randi Korn & Associates, Inc. (RK&A) to conduct a multi-method summative evaluation of Q?rius, an interactive and experimental learning space that brings the unique assets of NMNH—the science, researchers, and collections—out from behind the scenes. Q?rius is designed as a flexible space for walk-in visitors visiting exhibitions at the Museum as well as a program space. Given the breadth of experiences available in the space, the scope of the evaluation specifically targeted walk-in youth and adult visitors to Q?rius.