This paper introduces an ongoing research project on the use of electronics workshops in engaging underprivileged Latino middle and high school students in STEM – Science, Technology, Engineering and Mathematics. The project focuses on the practice of circuit bending – taking apart and creatively manipulating the circuits of children's toys to produce novel sound output. The main goal of the project is to design, develop and test curricula and materials that inspire learning in adolescents. Second hand, discarded or low cost electronics are used in the workshops as a low cost platform for
DATE:
TEAM MEMBERS:
Garnet HertzGillian HayesAmelia Guimarin
This CRPA award deals with inspiring youth to science careers and specifically in space science. The Green Bank Telescope in collaboration with the Pulsar Search Collaboratory, the National Radio Astronomy Observatory, and West Virginia University will develop a documentary film describing what pulsars are, how they are identified, and how youths participate in these investigations and discoveries. Through this experience youths learn aspects of space science, mathematics, physics, and computational science. Several young students have discovered new pulsars. The film will describe the concepts behind pulsars, how they are identified, and how the students can participate. The idea here is that potential students will see that other kids are participating and they may be successful as well. In the film, several well known scientists will be interviewed including Neil degrasse Tyson, Director of the Hayden Planetarium and Dame Jocelyn Bell-Burnell, the lady in Great Britain who discovered the first pulsar. Moreover, they will interview several young scientists who discovered the most recent pulsars through this program. The objectives of this effort are to be inspirational to young people and to engage the public with the concepts of space science and pulsars.
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE:
-
TEAM MEMBERS:
Loren ThompsonJeremy BabendureBen Wiehe
Investigators from the MIT Media Lab will develop and study a new generation of the Scratch programming platform, designed to help young people learn to think creatively, reason systematically, and work collaboratively -- essential skills for success in the 21st century. With Scratch, young people (ages 8 and up) can program their own interactive stories, games, animations, and simulations, then share their creations with others online. Young people around the world have already shared more than 1 million projects on the Scratch community website (http://scratch.mit.edu). The new generation, called Scratch 2.0, will be fully integrated into the Internet, so that young people can more seamlessly share and collaborate on projects, access online data, and program interactions with social media. The research is divided into two strands: (1) Technological infrastructure for creative collaboration. With Scratch 2.0, people will be able to design and program new types of web-based interactions and services. For example, they will be able to program interactions with social-media websites (such as Facebook), create visualizations with online data, and program their own collaborative applications. (2) Design experiments for creative collaboration. As the team develops Scratch 2.0, they will run online experiments to study how their design decisions influence the ways in which people collaborate on creative projects, as well as their attitudes towards collaboration. This work builds on a previous NSF grant (ITR-0325828) that supported the development of Scratch. Since its public launch in 2007, Scratch has become a vibrant online community, in which young people program and share interactive stories, games, animations, and simulations - and, in the process, learn important computational concepts and strategies for designing, problem solving, and collaborating. Each day, members of the Scratch community upload nearly 1500 new Scratch projects to the website - on average, a new project almost every minute. In developing Scratch 2.0, the team will focus on two questions from the NSF Program Solicitation: (1) Will the research lead to the development of new technologies to support human creativity? (2) Will the research lead to innovative educational approaches in computer science, science, or engineering that reward creativity? Intellectual Merit: The intellectual merit of the project is based on its study of how new technologies can foster creativity and collaboration. The investigators will conduct design experiments to examine how new features of Scratch 2.0 engage young people in new forms of creative expression, collaboration, learning, and metadesign. Young people are already interacting with many cloud-based services (such as YouTube and Facebook). But Scratch 2.0 is fundamentally different in that it aims to engage people in programming their own projects and activities in the cloud. With Scratch 2.0, young people won?t just interact with the cloud, they will create in the cloud. The goal is to democratize the development of cloud-based activities, so that everyone can become an active contributor to the cloud, not just a consumer of cloud-based services. This development and study of Scratch 2.0 will lead to new insights into strategies for engaging young people in activities that cultivate collaboration and creativity. Broader Impacts: The broader impact of the project is based on its ability to broaden participation in programming and computer science. The current version of Scratch has already helped attract a broader diversity of students to computer science compared to other programming platforms. The investigators expect that the collaboration and social-media features of Scratch 2.0 will resonate with the interests of today's youth and further broaden participation. Integration of Scratch into the introductory computer science course at Harvard led to a sharp reduction in the number of students dropping the course, and an increase in the retention of female students. There have been similar results in pre-college courses. The National Center for Women & Information Technology (NCWIT) calls Scratch a ?promising practice? for increasing gender diversity in IT.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickNatalie RuskJohn Maloney
For the purpose of clarity and consistency, the term e-learning is used throughout the paper to refer to technology-enhanced learning and information technology (IT) in teaching and learning. IT depicts computing and other IT resources. Research into e-learning has changed in focus and breadth over the last four decades as a consequence of changing technologies, and changes in educational policies and practices. Although increasing numbers of young people have access to a wide range of IT technologies during their leisure activities, little is known about this impact on their learning. Much of
To better help museum visitors make sense of large data sets, also called “Big Data”, this study focused on the types of visual representations visitors recognize, and how they make meaning (or not) of various visuals. Individual adults and youths were shown five different data visualizations (one from each of five categories), one at a time, and asked if the visualization looked familiar and how it was read. This study found that Context and previous experience matters. Participants of all ages are familiar with a wide variety of visual displays of data. If a participant encounters a visual
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
NOVA Labs (pbs.org/nova/labs) is a free digital platform that engages teens and lifelong learners in activities and games that foster authentic scientific exploration. From building RNA molecules and designing renewable energy systems to tracking cloud movements and learning cybersecurity strategies, NOVA Labs participants can take part in real-world investigations by visualizing, analyzing, and playing with the same data that scientists use. Each Lab focuses on a different area of active research. But all of them illustrate key concepts with engaging and informative videos, and guide participants as they answer scientific questions or design solutions to current problems. Supporting pages on each Lab site explain the purpose and functions of the Lab, help teachers incorporate it into their classrooms, foster collaboration between users, and help users make connections to the broader world of STEM. Users are encouraged to explore potential career paths through “Meet the Scientists” profiles, and to obtain information about local and national STEM resources.
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE:
-
TEAM MEMBERS:
WGBH Educational FoundationPaula Apsell
Digital media and technology are revolutionizing how, where and when children learn, compelling many educators to completely re-imagine what a learning experience looks like. At the core of effective digital media and learning is the principle that instructional strategies should be personalized and that technology is a tool that supports effective teaching and learning practices. Afterschool programs are an ideal setting for digital learning--excelling at providing interest-driven learning opportunities can learn at their own pace, participate in hands-on learning experiences, and engage in
The number of jobs requiring proficiency in the science, technology, engineering and math (STEM) fields is projected to grow by 17 percent between 2008 and 2018, which is almost double the growth of non-STEM occupations. Computing and engineering represent a majority of these STEM jobs, and it is important that students are prepared to take advantage of these opportunities. Afterschool programs represent an avenue to provide robust learning experiences in computing and engineering, especially as schools are under many constraints and pressures that might prevent them from offering these topics
Discovering and understanding the temporal evolution of events hidden in text corpora is a complex yet critical task for knowledge discovery. Although mining event dynamics has been an important research topic leading to many successful algorithms, researchers, research and development managers, intelligence analysts and the general public are still in dire need of effective tools to explore the evolutionary trends and patterns. This exploratory project focuses on developing and validating a novel idea called narrative animation. Narrative animation uses animated visualizations to narrate, explore, and share event dynamics conveyed in temporally evolving text collections. Film art techniques are employed to leverage the animated visualizations in information organization and change detection, with the goals of enhancing analytical power and user engagement. A prototype system called CityStories is being developed to generate narrative animations of events in cities derived from web-based text. If this novel, risky research is successful, it is expected to yield fundamental results in narrative animation that can advance the current paradigm in information visualization and visual analytics by developing novel techniques in using animations for presenting and analyzing dynamic abstract data at a large scale. The pilot system CityStories system is expected provide a novel network platform for education, entertainment, and data analytics. It will engage general users such as students, teachers, journalists, bloggers, and many others in web information visualization and study. Results of this research will be disseminated through publications, the World Wide Web, and collaborations with researchers and analysts. The project web site (http://coitweb.uncc.edu/~jyang13/narrativeanimation/narrativeanimation.htm) will include research outcomes, publications, developed software, videos, and datasets for wide dissemination to public.