While there is extensive evidence that STEM careers can be important pathways for augmenting social mobility and for increasing individual prestige, many youth perceive a STEM trajectory as an unattractive option. In the US, women and members of historically marginalized racial and ethnic groups, continue to be underrepresented across STEM disciplines. One vehicle for generating and sustaining interest in STEM is providing youth long-term access to informal science education (ISE) institutions. Here, we incorporate triangulation methods, collecting and synthesizing both qualitative and
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.
In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).
Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.
The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.
The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE:
-
TEAM MEMBERS:
Maritza MacdonaldMeryle WeinsteinRosamond KinzlerMordecai-Mark Mac LowEdmond MathezDavid Silvernail
Pacific Science Center (Science Center) has been a pillar of science education programming in Seattle, Washington since 1962. Through interactive exhibits, planetarium shows, IMAX movies and outreach, the Science Center works to inspire a lifelong interest in science, math and technology. In 2010, the Science Center joined forces with the National Aeronautics and Space Administration (NASA) through NASA Now: Using Current Data, Planetarium Technology and Youth Career Development to Connect People to the Universe. NASA Now was designed to increase the awareness, knowledge and understanding of
Discover NASA is the Discovery Museum’s endeavor to engage students in grades K through 12 as well as members of the general public in innovative space science and STEM-focused learning through the implementation of two modules: upgrades to the Challenger Learning Center, and the creation of K through 12 amateur rocketry and spacecraft design programming. The programming will be piloted at the Discovery Museum and Planetarium, and at the Inter-district Discovery Magnet School and the Fairchild-Wheeler Multi-Magnet High School, with an additional strategic partnership with the University of Bridgeport, which will provide faculty mentors to high school seniors participating in the rocketry program. Through these two modules, the Discovery Museum and Planetarium aims to foster an early interest in STEM, increase public awareness about NASA, promote workforce development, and stimulate an interest in the future of human space exploration. Both modules emphasize design methodologies and integration of more advanced space science into the STEM curriculum currently offered by Discovery Museum to visitors and public schools. The Challenger Learning Center upgrades will enable the Museum to deliver simulated human exploration experiences related to exploration of the space environment in Low Earth Orbit and simulated human exploration of Moon, Mars, and beyond, which will increase public and student awareness about NASA and the future of human space exploration. The development of an amateur rocketry and spacecraft development incubator for education, the general public, and commercial space will stimulate the development of key STEM concepts.
Pacific Science Center will expand its Science, Technology, Engineering and Math—Out-of-School Time (STEM-OST) model to new venues in the Puget Sound region to improve science literacy and increase interest in STEM careers for youth. STEM-OST brings hands-on lessons and activities in physics, engineering, astronomy, mathematics, geology, and health to elementary and middle school children in underserved communities throughout the summer months. The center will modify lessons and activities to serve students in grades K-2, align the curriculum with the Next Generation Science Standards, and increase the number of Family Science Days and Family Science Workshops offered to enhance parent involvement in STEM learning. The program will employ a tiered mentoring approach with outreach educators, teens, and education volunteers to increase interest in STEM content and provide direct links between STEM and workforce preparedness.
This poster describes Skynet Junior Scholars (NSF award numbers 1223687, 1223235, 1223345) project. Skynet Junior Scholars engages middle and high school aged youth in the study of the Universe using the same tools as professionals by: targeting youth audience enrolled in the 4-H program; building accessibility standards into the SJS design ; using research quality, multi-wavelength telescopes. These telescopes are part of the Skynet Robotic Telescope Network.
NASA Now: Using Current Data, Planetarium Technology and Youth Career Development to Connect People to the Universe uses live interpretation and new planetarium technology to increase awareness, knowledge and understanding of NASA missions and STEM careers among schoolchildren, teens and the general public. Pacific Science Center seeks to achieve two primary goals through this project. The first goal is to create and deliver live planetarium shows both on- and off-site to schoolchildren and the general public that showcase NASA missions and data, as well as careers in physics, astronomy, aerospace engineering and related fields. The second goal is to engage underrepresented high school students through a long-term youth development program focused on Earth and space science that provides first-hand knowledge of science and careers within the NASA enterprise along with corresponding educational pathways. Over the course of this project Pacific Science Center will develop four new live planetarium shows that will be modified for use in an outreach setting. All of these shows (for both on- and off-site delivery) will be evaluated to determine the impact of the program on various audiences. In addition, the project will provide an understanding of the impact that an in-depth youth development program can have on high school students.
Informal Education at NASA Centers: Extending the Reach is a highly leveraged, modular, project-based approach to improving education opportunities for students, formal and informal educators, and life-long learners in NASA Ames Research Center’s local community and beyond. In partnership with the Aerospace Education, Research and Operations (AERO) Institute, NASA Ames has been developing two projects: Exploration Center Field Trips and Field Trip in a Box. California Teaching Fellows Foundation, as a sub awardee, has been expanding their After School University (ASU) program. The division has the goal of supporting NASA’s Education Outcome 2 with improved educational opportunities for all in the NASA Ames Visitor Center and opportunities to bring NASA content into the classroom to improve students understanding of STEM as well as improve teachers understanding and ability to teach NASA-related STEM topics. The division also has the goal of supporting NASA’s Education Outcome 3 by expanding ASU to include NASA-based STEM learning opportunities to 360 additional students in six rural schools as well as train 12 additional Teaching Fellows (Fresno State University future teachers). Through these objectives, NASA Ames has produced 10 Field Trip in a Box kits as well as new and expanded learning opportunities for all, especially 3rd – 8th grade classes, in the NASA Ames Visitor Center. ASU has reached 500 students in 10 schools and hosted 12-14 year old learners in a five-week computer-based flight simulation class, called Flying for Future Pilots.