The aim of this project is to communicate the basic laws of particle physics with Feynman diagrams - visual tools which represent elementary particle processes. They were originally developed as a code to be used by physicists and are still used today for calculations and elaborations of theoretical nature. The technical and mathematical rules of Feynman diagrams are obviously the exclusive concern of physicists, but on a pictorial level they can help to popularize many concepts, ranging from matter and the antimatter; the creation, destruction and transformation of particles; the role of
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE:
-
TEAM MEMBERS:
Loren ThompsonJeremy BabendureBen Wiehe
The Magnet Lab has a strong commitment to education. Through the Center for Integrating Research & Learning, the lab supports educational programming at all academic levels: K-12, technical, undergraduate, graduate and postdoctoral. Please explore the links listed to the left to find out more about the depth of our educational resources for the community, for teachers and for students as well as our unique research offerings. Our programs are designed to excite and educate students, teachers and the general public about science, technology and the world around them. All of our programs are developed in close collaboration with research scientists and educators. Housed at and partly funded by the MagLab, the Center is uniquely positioned to take advantage of the excellent resources, connections, world-class facilities and cutting-edge science the lab has to offer. We also receive generous support from the National Science Foundation and the State of Florida. The Center maintains a rigorous research agenda designed to investigate how Center programs and materials affect teachers and students. Our Mission Statement is to expand scientific literacy and to encourage interest in and the pursuit of scientific studies among educators and students of all ages through connections between the National High Magnetic Field Laboratory and the National Science Foundation, the community of Tallahassee, the State of Florida and the nation.
Marshall Barnes was chosen by Larry Bock, founder of the USA Science and Engineering Festival as a late addition to the USASEF after viewing Marshall's impressive SuperScience for High School Physics activities for National Lab Day and his emphasis on advanced concept science and technologies. Marshall was given free booth space to set-up an exhibit that featured what is now being called "STEAM" or Science, Technology, Engineering, Art, Math and was fairly interactive. Marshall's booth emphasized his actual research that the visitors could take part in or analyze themselves. He had a VCR, TV, CD player, MacBookPro laptop and his own invention - the Visual Reduction Window. There were four elements to the exhibit. There was a TV monitor that showed a scene from a movie that you could view with 3D glasses for TV that Marshall invented that work even with one eye closed. At different times that same monitor would feature footage from an experiment that Marshall conducted to produce one of Nikola Tesla's ideas that Tesla never accomplished - a wall of light. This same footage could be analyzed by the visitors - frame by frame, on the Mac computer to see exactly how the principle of resonance produced the wall of light from the build-up of reflections off a physical wall created by strobe lights. Visitors could also listen to hyperdimensional music that Marshall produced that takes any kind of music to a new listening experience. Based on the concept that music is a coded language with cues and instructions that are cognitively recognizable when translated, Marshall invented techniques and technologies that allow such translations and brought examples for visitors to listen to. They included an upcoming radio show theme and the soundtrack to a documentary on the reality behind Fox TV's FRINGE. The music featured song elements that move around between the speakers and make you feel like the music is alive. The most dramatic of all was the Visual Reduction Window, again invented by Marshall, that made kids look transparent and at times, almost completely invisible. Based on his famous research into invisibility, which is documented at the Santa Maria Experiment exhibit in the Santa Maria Education Visitor's Center in Columbus, Ohio, the effect of real life transparency is stunning and Marshall, the world's leading expert on invisibility research was able to describe the physics behind what he was doing and its applications in the real world. His approach to invisibility is superior to those methods pursued by Duke University and others, trying to do the same with metamaterials, and is based on a completely different model of invisibility that he calls, Visual Density Reduction or VDR. Using VDR techniques, Marshall can make attack helicopters, small gun boats, tanks and many other things invisible, which is why he doesn't reveal the current level of his research, due to National Security reasons. Overall, the exhibit was a wild success and serves as a model for a traveling exhibit for informal science at malls, fairs, science centers, and other festivals.
This Pathways Project connects rural, underserved youth and families in Eastern Washington and Northern Idaho to STEM concepts important in sustainable building design. The project is a collaboration of the Palouse Discovery Science Center (Pullman, WA), Washington State University and University of Idaho, working in partnership with rural community organizations and businesses. The deliverables include: 1) interactive exhibit prototype activities, 2) a team cooperative learning problem-solving challenge, and (3) take-home materials to encourage participants to use what they have learned to investigate ways to make their homes more energy-efficient and sustainable. The project introduces youth and families to the traditionally difficult physics concept of thermal energy, particularly as it relates to sustainable building design. Participants explore how building materials and their properties can be used to control all three types of heat transfer: conduction, convection, and radiation. The interactive exhibit prototypes are coupled with an Energy Efficient Engineering Challenge in which participants, working in cooperative learning teams, use information learned from the exhibit prototype activities to retrofit a model house, improving its energy efficiency. The project components are piloted at the Palouse Discovery Science Center, and then travel to three underserved rural/tribal communities in Northern Idaho and Eastern Washington. Front-end and formative evaluation studies will demonstrate whether this model advances participant understanding of and interest in STEM topics and careers. The project will yield information about ways that other ISE practitioners can effectively incorporate cooperative learning strategies in informal settings to improve the transferability of knowledge gained from exhibits to real-world problem-solving challenges, especially for rural and underserved audiences. This project will also provide the ISE field with: 1) a model for increasing the capacity of small, rural science centers to form collaborative regional networks that draw on previously unused resources in their communities and provide more effective outreach to the underrepresented populations they serve, and 2) a model for coupling cooperative learning with outreach exhibits, providing richer experiences of active engagement.
The objective of this youth media project is to provide 14-24 year olds with training and hands-on experience in engineering, and the physical and biological sciences. The project is designed around core practices that engage youth in original research and inquiry through experimentation, development, and creative use of new technologies and tools to communicate STEM to the public. Youth Radio project participants in Oakland, CA, Atlanta, GA and Washington, DC include 540 youth, 80% of whom are low-income and/or youth of color, plus another 400 youth via off-site outreach in schools and community centers. Core deliverables include: (1) "Brains and Beakers," eight live events per year where a visiting STEM researcher brings his/her work out of the lab and onto the stage at Youth Radio facilities, demonstrating key principles and discoveries and interacting with youth participants; (2) "Youth Radio Investigates," an annual 6-part multimedia series, where youth partner with university and industry-based researchers to explore the veracity of scientific claims applied to products and services and they use every day; (3) The "Application Development Lab," where youth develop, create and disseminate online embeddable and downloadable applications (12 annually) that serve real needs in youth communities. The digital media produced by the youth will be broadcast by National Public Radio and distributed online through various sites including iTunes and BoingBoing.net, one of the most frequently visited technology-focused sites on the web. Project advisors include STEM researchers in universities as well as highly experienced and successful new media technology developers. Project partners include National Public Radio, KQED, the California Academy of Sciences, and the Oakland Unified School District. This project builds on the successful prior work (NSF #0610272) that initiated a Science and Technology program within the Youth Radio organization. The summative evaluation by Rockman et al will measure how the program affects students' science and technology knowledge, skills, and attitudes. It will build on the evaluation from the prior NSF funded project (#0610272) that highlighted the organizational and staff growth processes as Youth Radio discovered how to design and implement successful, sustainable STEM programs. Rockman will evaluate the new programs (Youth Investigates, Brains and Beakers, and the Application Lab), measuring the following STEM-related student outcomes/impacts: perceptions of selves as producers/creators of science or technology; attitudes toward science and perceptions of scientists; understanding the process of scientific inquiry and research and/or technology skills development; and understanding or interest in careers in science or technology (based on National Research Council report, 2009). Data will be collected from the youth at the Oakland site and from the other Youth Radio bureaus to determine which aspects of the program transfer to multiple sites and which ones are unique to a specific location or set of circumstances. Methods include surveys of student attitudes, participant focus groups, interim assessments, objective skills assessments, and interviews. This project provides an innovative new model for collaborations between STEM researchers and under-represented youth resulting in digital media that impacts the youth as well as the public's understanding and engagement in science.
The Nexus of Energy, Water, and Climate: From Understanding to Action (Café +) project will develop and test two interactive board game concepts focused on energy, water, and climate with youth and adults from four highly diverse communities in New Mexico. The four primary goals of the project are to: (a) develop, play test, and implement two board, card, or other non-electronic games grounded in energy, water, and climate content at four project sites, (b) identify the key characteristics of the games that maximize problem solving while stimulating interest, engagement, and learning, (c) explore the implications of game playing on dialog, learning, and Café+ satisfaction for youth and adult participants, and (d) evaluate the viability of this model for full scale implementation throughout the existing Café Scientifique program, from which this project is based. Los Alamos National Laboratory, Sandia National Laboratory, PNM Resources, Scott Balaban Games Design, the Los Alamos County Utilities Department, and a host of advisors and consultants from a broad range of organizations and institutions will collaborate to develop, test, and implement the Café+ games model. The primary deliverables include: (a) two non-electronic multiage commercial quality games focused on energy, water, and climate content, (b) a comprehensive pilot study examining the impact, effectiveness, and viability of the Café+ model with the target audiences, and (c) formative and summative evaluations of the games implementation model. A significant outcome of Café+ is that New Mexico youth and adults, from diverse backgrounds, will learn relevant science content through the development and testing of engaging, innovative commercial quality games. Over 250 youth and adults will benefit directly from their participation in the pilot study. They will not only learn important science content while working collaboratively in groups (youth only and youth/adult groups), but they will also participate in an authentic scientific process experience as playtesters. In this role, youth and adults will experience critical science concepts such as trial and error and refinement. Further, the games will be made publicly available and implemented across the entire Café Scientifique program (n=960 youth). The evaluation study will employ a mixed methods approach to examine project implementation, effectiveness, and impacts. Focus groups, observations, and surveys will be employed to assess a number of variables such as (but not limited to): content knowledge and learning, interest, engagement, game features, game play processes, gaming obstacles and challenges, participant interactions, and motivation. Embedded assessment opportunities will also examine participants\' decision making abilities, analytical skills, and ability to transfer knowledge gained to real world situations as they navigate through the games. Data collected at the youth-only pilot test sites will be used in a comparative analysis of similar variables tracked at the youth and adult sites. Formative approaches will provide iterative, ongoing opportunities for programmatic and game refinement and adjustments. The formative and summative evaluations will endeavor to document critical data and findings needed to assess the viability of Café+ as a full scale development project, with additional games and project sites across the country. The Café+ project would add to the limited literature base on learning and science engagement of youth within Science Café settings in the 21st century. More critically, this pilot study could contribute to the dearth of current research on the impact of non-electronic game play can have on youth only groups and youth/adult groups working collaboratively to make important scientific decisions within Science Café settings. This comparative data could prove significant for other program models interested in implementing similar youth and adult game based program. Further, the relevance of the content could potentially spark youths' interest not only in pursuing courses and careers in STEM, but it could also motivate youth and adult participants to become more involved in civic engagement activities occurring within and beyond their local communities.
Amusement parks offer rich possibilities for physics learning, through observations and experiments that illustrate important physical principles and often involve the whole body. Amusement parks are also among the most popular school excursions, but very often the learning possibilities are underused. In this work we have studied different teacher roles and discuss how universities, parks or event managers can encourage and support teachers and schools in their efforts to make amusement park visits true learning experiences for their students.
DATE:
TEAM MEMBERS:
National Resource Center for Physics EducationAnn-Marie PendrillCecilia KozmaAndreas Theve
The World Biotech Tour (WBT) is a multi-year initiative that will bring biotechnology to life at select science centers and museums worldwide. The program, supported by the Association of Science-Technology Centers (ASTC) and Biogen Foundation, is scheduled to run from 2015-2017, with the 2015 cohort in Belgium, Japan, and Portugal. The WBT will increase the impact and visibility of biotechnology among youth and the general public through hands-on and discussion-led learning opportunities. Applications are now open for the 2016 cohort! Learn more and submit an application at http://www.worldbiotechtour.org/become-a-stop
DATE:
-
TEAM MEMBERS:
Association of Science-Technology CentersCarlin Hsueh
The Education and Outreach (EO) program is an essential part of the CRISP MRSEC located at Yale and SCSU. CRISP offers activities that promote the interdisciplinary and innovative aspects of materials science to a diverse group of participants. The objective of the program is to enhance the education of future scientists, science teachers, K-12 students, parents, and the general public. CRISP’s primary informal science activities include public lectures, family science nights, New Haven Science Fair and museum partnerships.