Skip to main content

Community Repository Search Results

resource project Public Programs
In the project entitled "The GLOBE Program 2010: Collaborative Environmental Research at Local to Global Scales," the University Corporation for Atmospheric Research (UCAR) will improve the functionality of the GLOBE Program by providing: (1) new methods, tools, and services to enhance GLOBE Partner and teacher abilities to facilitate inquiry-based learning and student research, (2) initial pilot testing and assessment of student and teacher learning activities and events related to Climate Science research, (3) improvements in GLOBE's technology infrastructure and data systems (e.g. database, social networking, information management) to support collaborations between students, scientists, and teachers, and (4) development of a robust evaluation plan. In addition, the UCAR will continue to provide support to the worldwide GLOBE community, as well as program management and timely communication with program sponsors.
DATE: -
TEAM MEMBERS: Valerie Williams
resource project Media and Technology
The project team is developing a prototype of a mobile platform, Zaption, to support teachers in using video clips to enrich learning. The product’s user-interface will allow teachers to easily add annotations to videos, make short video clips that align to topics, and enhance videos with time-linked elements and assessments that appear at the top of each video. In Phase I pilot research, the team will examine whether the prototype functions as planned, if teachers are able to use the prototype for different purposes, and whether students are engaged by the prototype.
DATE: -
TEAM MEMBERS: Chris Walsh
resource project Media and Technology
Purpose: This project will develop and test Happy Atoms, a physical modeling set and an interactive iPad app for use in high school chemistry classrooms. Happy Atoms is designed to facilitate student learning of atomic modeling, a difficult topic for chemistry high school students to master. Standard instructional practice in this area typically includes teachers using slides, static ball and stick models, or computer-simulation software to present diagrams on a whiteboard. However, these methods do not adequately depict atomic interactions effectively, thus obscuring complex knowledge and understanding of their formulas and characteristics.

Project Activities: During Phase I (completed in 2014), the team developed a prototype of a physical modeling set including a computerized ball and stick molecular models representing the first 17 elements on the periodic table and an iPad app that identifies and generates information about atoms. A pilot study at the end of Phase I tested the prototype with 187 high school students in 12 chemistry classes. Researchers found that the prototype functioned as intended. Results showed that 88% of students enjoyed using the prototype, and that 79% indicated that it helped learning. In Phase II, the team will develop additional models and will strengthen functionality for effective integration into instructional practice. After development is complete, a larger pilot study will assess the usability and feasibility, fidelity of implementation, and promise of Happy Atoms to improve learning. The study will include 30 grade 11 chemistry classrooms, with half randomly assigned to use Happy Atoms and half who will continue with business as usual procedures. Analyses will compare pre-and-post scores of student's chemistry learning, including atomic modeling.

Product: Happy Atoms will include a set of physical models paired with an iPad app to cover high school chemistry topics in atomic modeling. The modeling set will include individual plastic balls representing the elements of the periodic table. Students will use an iPad app to take a picture of models they create. Using computer-generated algorithms, the app will then identify the model and generate information about its physical and chemical properties and uses. The app will also inform students if a model that is created does not exist. Happy Atoms will replace or supplement lesson plans to enhance chemistry teaching. The app will include teacher resources suggesting how to incorporate games and activities to reinforce lesson plans and learning.
DATE: -
TEAM MEMBERS: Jesse Schell
resource research Public Programs
This report introduces a framework to support learning in library and museum makerspaces. The framework demonstrates how we can create the conditions for ambitious learning experiences to unfold within the making experience.
DATE:
TEAM MEMBERS: Children's Museum of Pittsburgh Institute of Museum and Library Services Peter Wardrip
resource project Media and Technology
This project team will develop and test a prototype an online platform to facilitate engineering project challenges within K–12 classrooms across many schools. The prototype will include a content management platform to enable a high volume of challenges for students to conduct projects on a broad range of STEM topics, such as computer coding, digital modeling, or producing simulations. In a pilot study with one school, the researchers will examine whether the prototype functions as planned, whether teachers are able to incorporate challenges within instruction practice, and if multiple classrooms are able to participate in a challenge and produce a product that in response to a challenge.
DATE: -
TEAM MEMBERS: Deanne Belle
resource research Media and Technology
There was a time when “science comic” meant a straightforward collection of pictures with a lot of captions and a few word balloons. The main character would recite a series of facts and definitions, and any attempt at plot or character development would be interrupted by a lecture. The comics featured more diagrams than action scenes, with clunky and expository dialogue. Rather than comics making science enjoyable, science made comics boring. Not anymore. The new generation of science graphic novels is designed as much to entertain as to educate. “The students love to read the books on
DATE:
TEAM MEMBERS: Brigid Alverson
resource project Media and Technology
Purpose: This project team will fully develop and test an open online platform that posts student-led engineering project challenges for Kindergarten to grade 12 classrooms. Research demonstrates that improved attitudes towards engineering in elementary and middle school are imperative to increase the pursuit of STEM degrees and careers. This project intends to address a shortage of tools and curricula in K-12 engineering today, in order to meet the learning objectives new the Next Generation Science Standards and to engage students in STEM.

Project Activities: During Phase I, (completed in 2016), the team developed a prototype, including a content management platform to host challenges on a broad range of STEM topics, such as computer coding, digital modeling, or producing simulations. At the end of Phase I, researchers completed a pilot study with 100 students and two teachers. Results demonstrated that the prototype operated as intended, that students were highly engaged with challenges on the platform, and that teachers were able to incorporate challenges within instructional practice. In Phase II, the team will refine the landing page, further develop the system architecture to accommodate a larger number of challenges, and upgrade the teacher portal to build capacity for the effective integration into instructional practice. After development is complete, the research team will conduct a pilot study to assess the feasibility and usability, fidelity of implementation, and promise of the platform to improve learning. The study will include 40 high school classrooms with a minimum of 25 students per class. Half of the classrooms will be randomly assigned to use the platform to conduct a challenge and half to follow business-as-usual procedures. Researchers will compare pre-and-post scores of students' science and engineering self-assessments, which measure ability to engage in science and engineering practices such as asking questions, modeling, planning and carrying out investigations, analyzing data, and constructing explanations, as well as content-specific measures depending on the specific challenge with which classes engage.

Product: The project team will develop a platform that will facilitate design challenges in K-12 classrooms across STEM academic topics and career paths within the field of engineering. The platform will enable classes to post their projects to the site and for other classes around the country to participate in the project. Each challenge (and the associated education resources curated for that challenge) will be publicly displayed on the Future Engineers platform and offered free for student participation and classroom facilitation. The content management system will be developed to enable the platform to host a high volume of challenges simultaneously and will allow for a diverse array of student-generated submissions. The platform will also include teacher resources to support the alignment of game play with learning goals and to support implementation.
DATE: -
TEAM MEMBERS: Deanna Belle
resource project Media and Technology
In prior research and development (in part supported by a 2014 ED/IES SBIR award), the project team developed Mission U.S., a series of web- and app-based games for topics in U.S. history. With this Phase I funding, the team will extend Mission U.S. by developing and testing a prototype of a virtual reality (VR) platform to immerse students in transformational moments in U.S history and to guide document-based investigations. The prototype of Mission U.S.: Time Snap will consist of VR goggles that present history content, and a website to host mission briefs to prepare student inquiry, worksheets to facilitate reflection, and an embedded assessment. At the end of Phase I in a pilot study with 30 students in one classroom, the researchers will examine whether the VR platform and the website function as planned, if students are engaged with the system, and whether student content knowledge of a historical event improves from pre- to post-test.
DATE: -
TEAM MEMBERS: Leah Potter
resource research Public Programs
The U.S. Education system is becoming more and more diverse and educators must adapt to continue to be effective. Educators must embrace the diversity of language, color, and history that comprises the typical classroom; this means becoming culturally competent. In doing so, comes with it the prospect of using culture to enhance the learning experience for students and the educator. Although the process of becoming culturally competent can be outlined, the realization of a culturally competent educator depends on changing one’s own perceptions and beliefs. The need for cultural competency and
DATE:
TEAM MEMBERS: Alicia Santiago
resource research Media and Technology
Ideas from social justice can help us understand how equity issues are woven through out-of-school science learning practices. In this paper, I outline how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. I apply these ideas to out-of-school science learning via television, science clubs and maker spaces, looking at research as well as illustrative examples to see how equity challenges are being addressed in practice. I argue that out-of-school science
DATE:
TEAM MEMBERS: emily dawson
resource research Public Programs
Students in the U.S. educational system are increasingly diverse, and this diversity is reflected in science, technology, engineering, and mathematics (STEM) fields. Diversity in education encompasses students from many races, genders, and socioeconomic backgrounds; students who speak a variety of languages; and students from many cultures. For instance, ethnic diversity increased by 5% across primary and secondary public schools from 2000 to 2007 (Aud, Fox, & KewalRamani, 2010). Diversity is also evident in the socioeconomic make-up of students, with almost half of 4th graders in public
DATE:
TEAM MEMBERS: Enrica Ruggs Michelle Hebl
resource research Public Programs
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
DATE:
TEAM MEMBERS: Amie Patchen Andrea Aeschlimann Anne Vera-Cruz Anushree Kamath Deborah Jose Jackie DeLisi Michael Barnett Paul Madden Rajeev Rupani