This planning grant project addresses the problem that individuals and communities in rural areas do not have access to typical informal science education venues that help the public better understand significant issues that impact their lives. A team of Cornell University investigators will develop strategies to educate rural communities in New York State on science-based issues such climate change and energy. The project seeks to determine how to effectively meet audience needs through a set of sustainable traveling exhibits tailored to very small rural venues. If successful, the practices could be expanded into a nationwide initiative for rural communities. The specific objectives of the planning work are to determine the most effective strategies for communicating science-based topics, the baseline knowledge of the communities on the topics; how to engage communities that are under-served by traditional informal science education venues; which human behaviors after the interventions are responsive to the proposed efforts; and how they can broaden their efforts to create a robust model for the nation. Steps to achieve these objectives will include: regional and local climate change opinion surveys, the establishment of rural partnerships and networks, content materials development targeted at specific audiences and regions, development of prototypes of small traveling exhibits, experiments to foster learning in rural communities through Web 2.0, groups and individual discussions, and internet dialogs.
DATE:
-
TEAM MEMBERS:
Sarah ChiconeTrisha SmrecakSamantha SandsRobert Ross
The New York Hall of Science (NYSCI), in collaboration with O\'Reilly Media will host a two-day workshop to explore the potential for the kinds of making, designing, and engineering practices celebrated at Maker Faire to enrich science and math learning. The purpose of this workshop is to identify and aggregate successful programming strategies that increase student engagement and proficiency in STEM, with a focus on students underrepresented in STEM careers. The meeting will be organized around three main ideas: catalyzing a national Maker movement; dissemination and scaling of design principles; and assessment of impacts on STEM learning and attitudes. The convening highlights the capacity of making activities to impact student motivation, attitudes, and conceptual understanding in STEM in both informal and formal learning environments. The workshop will be held in conjunction with the World Maker Faire at NYSCI on September 18-19, 2011. The World Maker Faire is a two-day, family-friendly event that celebrates the Do-it-Yourself or DIY movement and brings together a broad community of professionals and laypersons with a common interest in technology-based creativity, tinkering, and the reuse of materials and technology. The proposed workshop extends the work of the previous Maker Faire workshop (DRL 10-46459) by identifying initiatives that bridge the Maker and STEM communities while building students' foundational STEM knowledge and engaging audiences underrepresented in STEM careers. This workshop will accommodate approximately 50 local and national scientists, engineers, learning science researchers, educators, policymakers, and philanthropists. Select participants will present detailed case studies of maker programs, design principles, assessments, and measured outcomes in STEM attitudes and learning. Key elements of successful programs and assessment strategies will be identified across the case studies in brainstorming sessions and roundtable discussions. Following the workshop, a subset of the case studies will be compiled into an edited volume, indexed by the dimensions of student learning in the National Research Council publication, "A Framework for K-12 STEM Education: Practices, Crosscutting Concepts and Core Ideas." This project uses the momentum of the popular Maker Faire movement, based in design, engineering and technology concepts, to connect to STEM education while capitalizing on the strengths of informal learning environments. The workshop provides researchers, practitioners, and policymakers with an aggregated collection of program design principles and reliable metrics for documenting changes in preK-20 STEM attitudes and learning. The edited volume has the potential to advance the understanding of how to bridge formal and informal learning environments, while also fostering research on the affective dimensions of making in diverse audiences.
The University of Cincinnati Arlitt Child and Family Research and Education will conduct a two-year research investigation to document and understand young children's scientific dialog, interactions, behaviors, and thinking within expressly designed natural play environments called playscapes. Two existing environmental science-focused playscapes will serve as the informal context for the study. Pre-school children and their teachers at early childhood centers, Head Start programs and informal learning institutions such as zoos, nature centers, and museums will participate in the study. The Cincinnati Nature Center and the Cincinnati Playscape Initiative will partner with the University of Cincinnati for this research endeavor. The results of the study are expected to not only address a significant gap in the literature base related to self-directed play and young children\'s scientific thinking within playscapes environments, but the study also has the potential to inform the field more broadly about scientific learning and teaching across informal and formal contexts at the early childhood levels. Nine research questions will frame the study and seek to investigate: (a) children\'s behaviors in intentionally designed playscapes, (b) children\'s scientific thinking in intentionally designed playscapes, and the relationship between access to the playscape environment and children's attitudes about science and their own scientist identities. The study sample includes over 200 children (ages 3-5) will be recruited from local university, child care centers and head start programs. Each child will participate in research activities at one of two test sites, with sixty children participating in research activities at both test sites. As part of the study, the children will visit the test sites at least three different times and will be asked to explore the playscape environments on their own, with other children, and with their teachers. Lavalier microphones will capture the students' self-talk and dialogs with others, as they explore the specially designed playscape environments. Other data collection methods include: behavior mapping, direct observation, dialog analysis, surveys, focus groups, and curriculum-based assessments. A team of researchers, including university faculty and graduate assistants, will employ inductive, deductive, and abductive analytical methods and reasoning to analyze and synthesize the data. Concurrently, an external evaluator at the Evaluation Services Center will employ a mixed-methods approach for the formative, remedial, and summative project evaluations. An ultimate goal of the project is to use the research findings to provide a scientific base for the development of an early childhood approach that promotes scientific thinking and learning within self-directed, informal contexts.
University of Washington researchers and their collaborators are evaluating the impacts and effectiveness of a citizen science program called COASST (Coastal Observation and Seabird Survey Team) that engages 600 trained non-scientists in collecting data on beached birds found on more than 300 beaches from the north coast of California to Alaska. The goals of the COASST program are to expand coastal citizen involvement in scientifically meaningfully science and improve the use of citizen science as a tool for scientific inquiry and resource management. Project personnel are analyzing current COASST materials and activities to determine (1) the best uses of COASST bird data, (2) how to maximize engagement of coastal citizens in COASST\'s scientific activities, (3) how to increase COASST participant learning, skills development, awareness and action, and (4) how to scale up the project by developing additional materials and facilitating adoption of the COASST model by other organizations around the country. The analysis includes an evaluation study of the existing beached bird instructional module to identify successful components for future use and determine whether the balance between automation and individualization of components, such as the materials, website, and training, optimizes participant experience. The project team is also working with current participants, marine scientists, and marine natural resource managers via surveys, focus groups and design and testing groups, to determine what other types of data are important for citizen scientists to collect. The project's findings will help researchers understand how citizens, scientists, and resource managers can partner to engage the public in rigorous citizen science activities, create a flexible citizen science program that can be scaled-up demographically and geographically, and work with new and existing COASST participants, COASST data end-users, and potential COASST model adopters to meet new scientific, educational, and resource management needs.
The Science Museum of Minnesota (SMM) is collaborating with the Museum of Science in Boston (MoS), the North Carolina Museum of Life and Science in Durham (NCMLS), Explora in Albuquerque, the Center for Research in Mathematics and Science Education at San Diego State University (CRMSE), and TERC in Cambridge, MA to develop, create and evaluate "MathCore for Museums," long-term math environments that children can interact with over multiple visits and over several years. The project is prototyping and producing 12 open-source, validated interactive exhibits about proportion: fractions, ratios, similarity, scaling, and percentages, basic concepts for understanding Algebra. The eight best exhibits will be replicated for each MathCore museum and the exhibits will be supported by a limited-access website designed to support and extend repeated use of exhibits and further exploration of ratio and proportion. Selinda Research Associates will conduct a longitudinal evaluation of the project. CRSME will conduct a research study of selected exhibit prototypes to investigate when children start to work on proving relations between similarity and proportion in informal settings, the relationship between children's artwork and mathematical insight, and the roles of bodily activity in learning to see relations in similarity and proportion. Results will be disseminated in peer-reviewed publications, at professional meetings, at the Association of Science and Technology Center's RAP Sessions at the NCMLS, and through the project's website.
This project comprises the NSF-funded portion of the renovation of a 25,000 sq. ft. natural history gallery called "CHANGING CALIFORNIA." ORIGINAL PROJECT DESCRIPTION: The Oakland Museum of California (OMCA) will develop, implement, and evaluate Hotspot California, a research-based natural science gallery transformation that will explore the educational potential of wildlife dioramas to engage the public in urgent environmental issues. The exhibition will showcase five real places in California that exemplify high biological diversity and complex environmental issues. Innovative approaches to interpretation will emphasize personal connections to these places and infuse static dioramas with visualization technologies that illustrate environmental change over time. The project will explore how such enhancements to dioramas might help visitors develop place-based connections to the natural world. The project has four major deliverables: 1) an innovative 25,000 sq ft gallery exhibition installation featuring five specific California places where California's unique biodiversity is threatened; 2) an application and evaluation of a new participatory exhibit design model involving community contribution, collaboration, and co-design; 3) a two-day "synthesis symposium" for informal science education professionals to consider broad applications of project findings for the field; and 4) "Diorama Dilemmas: A Source book for Museums," synthesizing relevant literature, case studies, and findings from the project's research and evaluation generalizable to the field. The project has evolved since the NSF award, but it remains aligned with its original goals. The team increased the number of California places from five to seven and worked to add a strong human presence within a gallery previously devoted almost entirely to other species. Innovative reuse of OMCA's dioramas and habitat cases continues to be the project's core, but the team's approach has emphasized re-contextualizing rather than revising those exhibits. New elements include iconic artifacts and environments reflecting recent human impact on California, relevant objects from OMCA's art and history collections, digital visualizations of dynamic natural phenomena, and spaces for hands-on investigation. Community focused elements include multiple co-created exhibits and media programs offering inspiring encounters with Californians deeply involved in these seven places.
The University of Minnesota is partnering with several nature centers in the Midwest to transform citizen "technicians" into citizen "scientists." The Driven to Discover project will use existing citizen science programs with strong educational components to engage 12-14 year old youth and their adult mentors in authentic research. The goal of the project is to develop a training model for adults who work with youth in a variety of informal education settings to involve them in authentic scientific inquiry via citizen science rather than just data collection activities. In the proof-of-concept phase, teams consisting of 4-H youth, adult leaders, and several scientists are conducting participatory action research to understand what factors lead youth to full engagement in ecological research. In phase two, project personnel are training 4-H educators, naturalists, and teachers how to engage youth and their adult leaders in other 4-H programs and other informal education programs to conduct ecological research with scientists in advisory roles. Phase one involves approximately 10 adults and 70 youth, whereas phase two involves approximately 40 adults and 300 youth. A front-end study defined the project's target audiences and partners. Formative evaluation study will monitor interactions among members of the research teams and summative evaluation will measure impacts on participants' knowledge, skills development, attitudes, and behavior. Project deliverables include youth-generated ecological research findings, web-based program implementation materials, an annual conference, and a model for engaging youth groups in informal settings in authentic scientific inquiry. The model is expected to impact more than six million youth nationwide.
DATE:
-
TEAM MEMBERS:
Karen OberhauserNathan MeyerAndrea Lorek StraussPamela NippoltKatie ClarkRobert Blair
"Human +" is a collaboration among the New York Hall of Science (NYSCI), NSF Quality of Life Technology Engineering Research Center (QoLT ERC) of the University of Pittsburgh and Carnegie Mellon University, Oregon Museum of Science and Industry (OMSI), and the Institute for Learning Innovation. The project will engage engineers, educators, designers, and people with disabilities in a process of participatory design to create a 2,500 square foot traveling exhibition entitled "Human +". The STEM content is engineering, specifically the extraordinary technological advances being made to enhance human abilities. The project is making three significant contributions to the Informal Science Education (ISE) field: 1) It is a model of close integration of an NSF-funded engineering research center into an ISE project. (2) It engages people with disabilities, both as participants and audiences. (3) It broadens engagement with engineering as a participatory, creative, and socially important ISE undertaking. Project deliverables are: (1) a model for participatory design of ISE activities to generate innovation among engineers, people with disabilities, ISE professionals, and designers; and 2) a 2,500 square-foot traveling exhibition engaging the public in the science, technology, and social issues of human enhancement. Front-end evaluation will be conducted by OMSI to explore pre-existing knowledge and attitudes, integrating significant numbers of people with disabilities including veterans, young people, and older people. Formative evaluation will likewise be integrated with the participatory design process, with prototypes being tested both by audiences and by the core "Human +" participatory design team. Summative evaluation by Institute for Learning Innovation will address both the effectiveness of the participatory design process and the effectiveness of the exhibition in addressing the National Academy for Engineering goals for public understanding of engineering as a creative and socially engaged field. An estimated 700,000 visitors will experience the "Human +" exhibition at OMSI and NYSCI. In addition, OMSI will tour the exhibition through its extensive and diverse network of science centers, with 24 science centers having expressed interest as potential host sites. The Science Friday webcast/podcast will reach an estimated 1.3 million listeners. Public audiences will engage in the topic of engineering and better understand its importance to human existence through experiencing one compelling research area. The project team will work with the Veterans Administration and DARPA to engage veterans with disabilities both as participants and as audiences. The exhibit with its human-focused content will also stimulate interest among older adults and promote the engineering field to groups underrepresented in engineering such as people with disabilities, girls, and minority youth. The project places cutting-edge technology and engineering practice in a profoundly personal context. "Human +" will contribute to the empowerment of the great majority of people who have, or will have, disabilities during their lifetime and for those of us who care for people with disabilities.
This project will engage underserved Native and non-native youth and adults in environmental science content and awareness through innovative exhibitions and hands-on activities. Traditional ecological knowledge (TEK) and western science will be communicated and promoted within culturally relevant contexts as valuable, complementary ways of knowing, understanding, and caring for the world. The Oregon Museum of Science and Industry (OMSI), the lead institution, and its partner organizations, The Indigenous Education Institute (IEI), The National Museum of the American Indian (NMAI), the Tramastklikt Cultural Institute, the Confederated Tribes of the Umatilla Indian Reservation, the Hibub Cultural Center and Natural History Preserve (Tulalip Tribes) will work collaboratively to develop and deliver all aspects of the project. An estimated 1.5 million Native American and non-Native American youth and adults are expected to be engaged in the project\'s exhibits, website, and activity kits over the five year duration of the project. Native American and non-Native American youth (ages 11-14) and their families from the Portland area and visitors to national science centers, tribal museums, and members of Native American organizations and service providers will be targeted for participation in Generations of Knowledge activities. In addition, the Professional Collaborative component will bring professionals from the partnering organizations to share resources, professional opportunities, and document their collaborative process. OMSI, project partners, Native scientists, tribal museum partner, exhibit developers, advisors, and members of various Native American communities will work collaboratively to develop four integrated deliverables. Each deliverable will be interconnected and designed to accommodate a variety of venues and audiences. Project deliverables include: (a) a 2,000 sq ft traveling exhibition, (b) a small traveling graphic panel exhibition, (c) an online virtual exhibition, (d) an activity kit for Native youth in informal and formal settings, and (e) opportunities and resources for reciprocal collaboration between ISE and Native American partners through a professional collaborative initiative. IEI and advisors from RMC Research and Native Pathways will conduct the external evaluation using a mixed method, community-based participatory research (CBPR) approach. Formative and summative evaluative data will be used to monitor, assess, and inform the project and the extent to which project goals have been met and the intended impacts achieved. The anticipated project outcomes include (but not limited to): (a) an awareness and understanding of the interconnectedness of TEK and western science, (b) a recognition of the relevancy and value of TEK and western science for understanding and caring for the natural world, (c) intergenerational learning and discussions about related TEK and western science issues, and (d) an increased capacity, supported by evidence, among the project team and partners to facilitate reciprocal collaborative efforts. This project builds on a long history of successful NSF/DRL supported work led by OMSI and IEI. It also extends existing traditional ecological knowledge focused work through a culturally contextualized hands-on traveling and virtual exhibitions, a rigorous professional development component, highly visible national partners (e.g., NMAI), and a national reach to over one million Native American and non-Native American youth and adults over a five year period. The project\'s research and evaluation findings will add to the knowledge base on strategies that can be employed to communicate and promote TEK and western science as complementary, valuable was of understanding and caring for the natural world.
This development project will create, test, validate, and disseminate a suite of evaluation tools for use by professionals who are developing Public Participation in Scientific Research projects. The necessary evaluation tools for what participants learn or believe after participating in citizen science projects (called Public Participation in Scientific Research or PPSR) are generally unavailable to project managers where conference participants. The project will collect examples of cognitive and affective test instruments and try them out in citizen science projects underway. This project grew from discussions at a conference on Developing a Citizen Science Toolkit at Cornell in 2007 where participants noted that evaluation is the most challenging and least understood step in the process of project development. Thus to provide projects with the tools of evaluation that are relevant to the field itself and to the development of the projects on citizen science, the investigators intend to conduct a study to demonstrate how an evaluation framework can be used to assess the impact of projects by conducting evaluations and presenting them as case studies. The investigators will provide evaluation tools for project developers and will facilitate community discussion about the use of these materials. The project also will provide an evaluation of the procedures used to create the tool kit for investigators. The evaluators are expert professionals in the field of attitude measurement, cognitive measurement, informal science program creation, and citizen science management. The investigators will provide webinars for investigators planning to use the tool kit in their projects. This project is intended to strengthen the field of informal science education researchers and administrators by providing a source for acceptable measurement methods of the impact on the public of participating in a scientific research project.
This planning effort, a collaboration of teams at the University of Maryland, Cornell University, Carnegie Mellon University and the Sciencenter of Ithaca, deals with the development and testing of a unique methodology for educating youth in computer programming. Through a mobile robot that is cleverly disguised as a small animal, participants will learn to manipulate the system by physically moving it as well as setting variables via electronic buttons thereby learning programming and design. The eventual use of this system and methodology is in museum exhibits so preliminary survey data will be gathered from various venues that presently use less capable devices. Iterative testing will be done at the Sciencenter in its exhibits.
DATE:
-
TEAM MEMBERS:
Larry DavisVibha Sazawai
resourceprojectProfessional Development, Conferences, and Networks
The proposed CAREER study uses a comprehensive mixed-methods design to develop measures of motivational beliefs and family supports for Spanish and English speaking Mexican-origin youth in high school physical science. The research examines a three-part model which may provide a deeper understanding of how Mexican families support youth through their general education strategies, beliefs about physical science, and science specific behaviors. This approach incorporates motivation and ecodevelopmental theories while pursuing an innovative line of research that examines how the contributions of older siblings and relatives complement or supplement parental support. The study has four aims which are to (1) to develop reliable, valid measures of Mexican-origin adolescent motivational beliefs and family supports in relation to high school chemistry and physics, (2) to test whether family supports predict motivational beliefs and course enrollment, (3) to test how indicators in Aim 2 vary based on gender, culture, English language skills and relationship quality, and (4) to examine how family supports strengthen or weaken the relationship between school-based interactions (teachers and peer support) and the pursuit of physical science studies. Spanish and English-speaking Mexican-origin youth will participate in focus groups to inform the development of a survey instrument which will be used in a statistical measurement equivalence study of 300 high school students in fulfillment of Aim 1. One hundred and fifty Mexican high school students and their families will participate in a longitudinal study while students progress through grades 9-12 to examine Aims 2- 4. Data to be collected includes information on science coursework, adolescent motivational beliefs, supports by mothers and older youth in the family, and family interactions. All materials will be in English and Spanish. The educational and research integration plan uses a three pronged approach which includes mentoring of doctoral students, teacher outreach, and the evaluation of the ASU Biodesign high school summer internship program using measures resulting from the research. It is anticipated that the study findings will provide research-based solutions to some of the specific behaviors that influence youth motivation in physical sciences. Specifically, the study will identify youth that might be most affected by an intervention and the age of maximum benefit, as well as valid, reliable measures of youths' motivation that can used in interventions to measure outcomes. The study will also identify family behaviors that may be influenced, including education strategies for school preparation, beliefs about physical science, and sciece-specific strategies such as engaging in science activities outside school. The findings will be broadly disseminated to science teachers, scholars, and families of Mexican-origin youth. This multi-tiered approach will advance current scholarship and practice concerning Mexican-origin adolescents' pursuit of physical science.