Skip to main content

Community Repository Search Results

resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource project Public Programs
'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
DATE: -
TEAM MEMBERS: Tara Chklovski Toby Cumberbatch Shrikanth Narayanan Doe Mayer Jed Dannenbaum Harouna Ba Molly Porter Preeti Gupta Sylvia Perez
resource evaluation Public Programs
EDC’s Center for Children and Technology (CCT), a nonprofit research and development organization (cct.edc.org), conducted the formative evaluation of the BAS project for the last three years. Iridescent has assisted CCT researchers in the successful implementation of the evaluation (e.g., organizing site visits and meetings with partners, administering surveys, collecting consent forms). As discussed in more details below, Iridescent has always taken seriously the evaluation findings and recommendations, and has acted upon them to make program improvements. This research partnership has led
DATE:
TEAM MEMBERS: EDC Center for Children and Technology Tara Chklovski Harouna Ba
resource research Informal/Formal Connections
In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science
DATE:
TEAM MEMBERS: Phyllis Katz J. Randy McGinnis Kelly Riedinger Gili Marbach-Ad Amy Dai
resource evaluation Informal/Formal Connections
Learning to design and deliver research information customized for particular audiences is one major goal of the Museum of Science’s Research Communication Laboratory (RCL). Judging of short research presentations by an independent judge revealed that graduate students from MIT’s Center for Excitonics who participated in RCL demonstrated significantly better spoken and graphic communication skills compared with graduate students who did not experience RCL instruction. The judge rated RCL students as significantly better than non-RCL students with respect to three criteria: 1) presentation
DATE:
TEAM MEMBERS: Museum of Science, Boston Carol Lynn Alpert Barbara Flagg
resource evaluation Public Programs
One objective of the Center for High-rate Manufacturing is to increase knowledge of and interest in nanotechology among secondary and postsecondary students, educators, and the general public. The Center partners with the Museum of Science, Boston, to help carry out these goals. The Museum's CHN sub-award PI and her team provides training to graduate students to help them learn how to engage in education and outreach activities with these groups. To better understand graduate student education and outreach activities, and student participation in the Museum of Science outreach activities and
DATE:
TEAM MEMBERS: UMass Donahue Institute Research and Evaluation Group Carol Lynn Alpert Carol Barry
resource project Media and Technology
The Badges for College Credit project designs and researches: (1) a digital badge system that leads to college credit as the context for investigating how to integrate badges with learning programs; (2) how to assess learning associated with badges; and (3) how badges facilitate learning pathways and contribute to science identity formation. The project is one of the first efforts to develop a system to associate informal science learning with college credit. The project will partner with three regional informal science institutions, the Pacific Science Center, the Future of Flight, and the Seattle of Aquarium, that will facilitate activities for participants that are linked to informal science learning and earning badges. The project uses the iRemix platform, a social learning platform, as a delivery system to direct participants to materials, resources, and activities that support the learning goals of the project. Badges earned within the system can be exported to the Mozilla Open Badges platform. Participants can earn three types of badges, automatic (based on participation), community (based on contributions to building the online community), and skill (based on mastery of science and communication) badges. Using a learning ecologies framework, the project will investigate multiple influences on how and why youth participate in science learning and making decisions. Project research uses a qualitative and quantitative approach, including observations, interviews, case studies, surveys, and learning analytics data, and data analytics. Project evaluation will focus on the nature and function of the collaboration, and on the scale-up aspects of the innovation and expansion, by: (1) analyzing and documenting effective procedures,and optimal contexts for the dissemination of the model and (2) by analyzing the collaboration between informal science organizations and higher education.
DATE: -
TEAM MEMBERS: Carrie Tzou Karen Lennon Amanda Goertz Gray Kochlar-Lindgren
resource research Professional Development, Conferences, and Networks
This guide provides effective practices for anyone — university faculty member, K–12 teacher, or administrator — who wants to create a project that partners science, technology, engineering, and mathematics (STEM) graduate students (Fellows) with K–12 teachers on a sustained basis. These recommendations come from the community of faculty members, graduate students, K–12 teachers, program managers, and evaluators who participated in the U.S. National Science Foundation (NSF) Graduate STEM Fellows in K–12 Education (GK–12) Program from its start in 1999 through 2012. The guide was written to
DATE:
TEAM MEMBERS: Kate Stoll Sonia Ortega Tim Spuck
resource project Media and Technology
The Science Source Pathways Project will conduct initial work designing and testing a new model for providing news on STEM related topics to the rural and Native American communities in Montana. This project will enhance understanding of how the communication of scientific research reaches and impacts underrepresented audiences. A collaborative model will be developed between the environmental journalism program at the University of Montana and various local television, radio, and online media outlets that are either operated by or reach Native Americans on reservations and throughout the state. Project deliverables include a survey and analysis of current science reporting reaching this audience; and production and testing of prototype science news stories for dissemination on various platforms (print, radio, TV, web). The development of science news pieces will be led by graduate students in the School of Journalism under the careful guidance and mentorship of experienced professors. This project will enhance the communication and amount of STEM content delivered to underserved groups, and provide diverse opportunities for them to engage in STEM related environmental issues that affect their local communities.
DATE: -
TEAM MEMBERS: Alison Perkins
resource project Public Programs
The NEES network is comprised of a central management office (NEEScomm) located at Purdue University, and 14 geographically distributed earthquake and tsunami research facilities. We are considered to be a Large Facility within the Engineering division. We have been responsible for the coordination of centralized education, outreach and training activities at each of theses research facilities plus assessment of these activities. We have conducted a very successful REU program for the past 5 years. Additionally we maintain a repository of education modules and learning objects available on our website.
DATE: -
TEAM MEMBERS: Barbara Fossum