This summary brief captures highlights from the second year of the NSF-funded WaterMarks project. The technical evaluation report for this same project period can be found on the main project page. The purpose of this document is to communicate key updates (as observed by the evaluation team) in a less technical way with the many different audiences who have an interest in keeping up with WaterMarks.
This is the evaluation report for the second year of the NSF-funded WaterMarks project. It reflects a current summary of available evidence about the intended outcomes of program activities to date, as well as commentary on how the project is using (or could use) this information moving forward.
This document is the final evaluation report for the project, which focuses both on formative evaluation of the collaborative+interdisciplinary presentation creation process and summative evaluation of audience learning outcomes.
This summary brief captures highlights from the evaluation report for the first year of the NSF-funded WaterMarks project (also available on this page). The purpose of this document is to communicate key updates from evaluation in a less technical way with the many different audiences who have an interest in keeping up with WaterMarks.
This is the evaluation report for the first year of the NSF-funded WaterMarks project. It reflects an initial summary of available evidence about the intended outcomes of program activities to date, as well as commentary on how the project is using (or could use) this information moving forward. This report contains descriptions of embedded measures (i.e. anonymized drawings and reflections captured on a thematic postcard) included in community walks and analyses of secondary data (i.e., interviews conducted by other members of hte project team), as well as reflections emerging from the
A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE:
-
TEAM MEMBERS:
Folashade Cromwell SolomonTracey WrightLawrence Pratt
The attached document describes the results of evaluation of affective and cognitive impact of the Fusion Science Theater show model. Affective gains were measured by post-show questionnaires and cognitive gains were measured by having audience members vote for their prediction to the investigation question before and after the "lesson" of the show. Appendix includes instruments.
DATE:
TEAM MEMBERS:
Madison Area Technical CollegeDr. Joanne Cantor
The data collection for this project involved three audiences: (1) a post-event survey completed by participants at the 'Eight-Legged Encounters' event, (2) a club experience survey completed by middle school students in an after-school club, and (3) focus groups, observations, and end-of-course evaluations conducted with students in the BIOS 497/897 'Communicating Science through Outreach' seminar class at the University of Lincoln, Nebraska. Year two data collection was completed from September 2013 - March 2014. Appendix includes survey.
DATE:
TEAM MEMBERS:
University of Nebraska-LincolnEileen Hebets