It is estimated that there could be 40 billion earth-sized planets orbiting in the habitable zones of stars in the Milky Way. Major advances in long range telescopes have allowed astronomers to identify thousands of exoplanets in recent decades, and the discovery of new exoplanets is a now a common occurrence. Public excitement for the discoveries grown alongside these discoveries, thus opening new possibilities for inspiring a new generation of scientists and engineers that may dream of one day visiting these planets. This project investigates the use of interactive, intelligent educational technologies to generate interest in STEM by allowing learners to explore and even create their own exoplanets. Research will occur across several informal learning contexts, including summer camps, after school programs, planetarium shows, and at home. The approach is based on the idea of "What if?"questions about Earth (e.g., "What if the Moon did not exist?"), designed to trigger interest in STEM and frame exploratory and elaborative discussions around hypothetical science questions that are subsequently linked to the search for habitable exoplanets. Learners are able to interact with and explore scientifically accurate simulations of alternative versions of Earth, while making observations and posing explanations for what they see. Technology-based informal learning experiences designed to act as triggers for and sustainment of interest in STEM have the potential to plug the leaky STEM pipeline, and thus have profound implications for the future of science and technology in the United States.
The project seeks to advance the science of designing technologies for promoting interest in STEM and informal astronomy education in several ways. First, the project will develop simulations for exploratory learning about astronomy and planetary science. These simulations will present hypothetical worlds based on what-if questions and feasible models of known exoplanets, thus giving learners a chance to better understand the challenges of finding a habitable world and learning about what is needed to survive there. Second, a new PBS NOVA Lab will be developed that will focus on Exoplanet education. This web-based activity has the potential to reach millions of learners and will help them understand how planets are formed and the requirements for supporting life. Learners who use the lab will have an opportunity to invent their own exoplanets and export them for first-person exploration. Third, researchers on the project will design and implement Artificial Intelligence-based pedagogical agents to support learning and promote interest. These agents will inhabit the simulations with the learner, acting as a coach and guide, and be designed to be culturally responsive and personalized based on learner preferences. Fourth, interactive exoplanet-focused planetarium shows, that will involve live interaction with simulations, will take place at the Fiske Planetarium (Boulder, CO). Finally, the project will develop a server-based infrastructure for tracking and supporting long term development of interest in STEM. This back-end will track fine-grained behaviors, including movement, actions, and communications in the simulations. Such data will reveal patterns about how interest develops, how learners engage in free-choice learning activities, and how they interact with agents and peers in computer simulations. A design-based research methodology will be employed to assess the power of these different experiences to trigger interest and promote learning of astronomy. A range of different pathways for interest in STEM will therefore be considered and assessed. Research will measure the power of these experiences to trigger interest in STEM and promote re-engagement over time. Innovation lies in the use of engaging and intelligent technologies with thought-provoking pedagogy as a method for extended engagement of diverse young learners in STEM. Project research and educational resources will be widely disseminated to researchers, designers developers and the general public via peer-reviewed research journals, conference presentations, informal STEM education networks of science museums, children's museums, Fab Labs, and planetariums, and public media such as public television's NOVA science program website.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
H Chad LaneNeil CominsJorge Perez-GallegoDavid Condon
Supported by the National Science Foundation, the Global Soundscapes! Big Data, Big Screens, Open Ears project employs a variety of informal learning experiences to present the physics of sound and the new science of soundscape ecology. The interdisciplinary science of soundscape ecology analyzes sounds over time in different ecosystems around the world. The major components of the Global Soundscapes project are an educator-led interactive giant-screen theater show, group activities, and websites. All components are designed with both sighted and visually impaired students in mind. Multimedia
In 2011 the Bishop Museum and two collaborating organizations, University of Hawai’i at Manoa (UH) and the Pacific Voyaging Society (PVS), were awarded a multi-year grant from the Native Hawaiian Education Program (NHEP) to develop classroom and dockside curricula, an online resource center for educators, teacher workshops, a planetarium show, and a field-trip program for middle school students. The overall goal of these educational products and programs is to make STEM content accessible to Native Hawaiian students by presenting it through the lens of ancient Hawaiian navigational systems.
Researchers at the American Association of Variable Star Observers, the Living Laboratory at the Boston Museum of Science, and the Adler Planetarium are studying stereoscopic (three-dimensional or 3D) visualizations so that this emerging viewing technology has an empirical basis upon which educators can build more effective informal learning experiences that promote learning and interest in science by the public. The project's research questions are: How do viewers perceive 3D visualizations compared to 2D visualizations? What do viewers learn about highly spatial scientific concepts embedded in 3D compared to 2D visualizations? How are viewers\' perceptions and learning associated with individual characteristics such as age, gender, and spatial cognition ability? Project personnel are conducting randomized, experimental mixed-methods research studies on 400 children and 1,000 adults in museum settings to compare their cognitive processing and learning after viewing two-dimensional and three-dimensional static and dynamic images of astronomical objects such as colliding galaxies. An independent evaluator is (1) collecting data on museum workers' and visitors' perceived value of 3D viewing technology within museums and planetariums and (2) establishing a preliminary collection of best practices for using 3D viewing technology based on input from museum staff and visitors, and technology creators. Spatial thinking is important for learning many domains of science. The findings produced by the Two Eyes, 3D project will researchers' understanding about the advantages and disadvantages of using stereoscopic technology to promote learning of highly spatial science concepts. The findings will help educators teach science in stereoscopic ways that mitigate problems associated with using traditional 2D materials for teaching spatial concepts and processes in a variety of educational settings and science content areas, including astronomy.
The Global Viewport project was an integrative collaboration between the Woods Hole Oceanographic Institution (WHOI) and. the New Bedford Oceanarium Corporation dba Ocean Explorium at New Bedford Seaport (hereafter, Ocean Explorium). The main thematic area that was addressed is Improving Public Earth System Science Literacy. A main objective of the Global Viewport project was to address Goal 1 of the GEO Education and Diversity Strategic Plan (2010-2015): “Advancing public literacy in Earth System Science.” For this evaluation the public interacted with spherical display content in an informal
DATE:
TEAM MEMBERS:
Woods Hole Oceanographic Institution (WHOI)Meredith Emery
Two Billion More Coming to Dinner is a 9 minute 32 second long film developed for the Science on a Sphere (SOS) network by the Science Museum of Minnesota (SMM). This film was funded by a Discovery Grant from the University of Minnesota’s Institute on the Environment (IonE). Science Museum of Minnesota staff worked closely with members of IonE’s Global Landscapes Initiative to develop the visualizations and content for this production. Two Billion More Coming to Dinner explores ways of dealing with human’s need to produce enough food for the 9 billion people expected to live on the planet by
The Planet Earth Decision Theater (PEDT), funded by NOAA (grant # NA10SEC0080021), will be a major component of the Future Earth exhibition, which opens at the Science Museum of Minnesota (SMM or the Museum) in late October 2011. The theater will operate in two modes: a facilitated show with live actors and an audience response system to engage the audience, and an autorun show with similar content. This evaluation focuses on the live performance part of PEDT. When complete, live performances will take place in SMM’s newly refurbished Science on a Sphere (SOS) space that will include SOS, a
Fifty visitors to SMM were recruited on the exhibit floor of the museum and asked to view the first draft of a seven-minute movie being developed for the Science on a Sphere exhibit. Visitors were brought into a small room, sat down and viewed the movie on a computer laptop. After watching the movie, visitors were asked a series of questions to assess their interest, enjoyment, and particular aspects of the movie. Visitors aged eight and above were eligible to be interviewed.
In this report we detail the results of one phase of formative evaluation on the NOAA funded Ocean-Atmosphere Literacy Partnership – a cooperative partnership between the American Museum of Natural History (AMNH) and The Science Museum of Minnesota (SMM). The American Museum of Natural History produced the first draft of a video program for the Science on a Sphere (SOS) exhibit called Forecast: Tropical Cyclones. The program was designed to inform visitors about tropical cyclones (a.k.a. typhoons, hurricanes) and to illustrate how technological advances in weather observation have allowed
This report summarizes findings from an evaluation of the NSF-funded project: Two Eyes, 3D. Through collaborations with two museums, the project sought to develop and test learning outcomes for stereoscopic (3D) resources. More specifically, the external evaluation—conducted by Rockman Et Al—sought to determine the perceived value of using stereoscopic technology within museums and planetariums, uncover best practices for implementation of stereoscopic resources, and further explore best practices for research partnerships within museum settings.
DATE:
TEAM MEMBERS:
American Association of Variable Star ObservrsJennifer Borland
The National Science Education Standards [National Research Council (1996) National science education standards. Washington, DC: National Academy Press] recommend that students understand the apparent patterns of motion of the sun, moon and stars by the end of early elementary school. However, little information exists on students’ ability to learn these concepts. This study examines the change in students’ understanding of apparent celestial motion after attending a planetarium program using kinesthetic learning techniques. Pre- and post-interviews were conducted with participants from seven
DATE:
TEAM MEMBERS:
Pennsylvania State UniversityJulia Plummer