Science Club Summer Camp (SC2) is a practicum-based teacher professional development program for elementary school teachers, aligned to the recently released Next Generation Science Standards (NGSS). It seeks to address well-described gaps in the scientific training of elementary teachers that threaten the effective implementation of NGSS and interrupt development of early youth science skills. We offer that the best way to prepare a future STEM and biomedical workforce is to help improve NGSS-aligned instruction at the K-5 level.
SC2 uses an integrated approach to train Chicago Public School teachers and youth in the nature of science. An interdisciplinary team of scientists, master science teachers, NGSS experts, and youth development staff will collaborate to incorporate the NGSS Disciplinary Core Ideas (DCIs), Crosscutting Concepts, and science and engineering practices into both out-of-school time learning at a summer camp and academic year instruction. Program participants will also learn about NGSS connections to health and biomedicine through interactions with practicing scientists, visits to research labs, and inquiry into health phenomena.
Over the course of the program, we will train 64 teachers and more than 2000 youth in authentic science and health practices. A multi-faceted evaluation plan will assess the impact of our program on teacher beliefs, knowledge, and understanding of the NGSS, and the degree to which their training results in changes to their instructional practice. Additionally, we will help teachers design critical NGSS-aligned assessment tools as measures of student learning. These instruments will provide early evidence on the connections between NGSS-aligned instruction and deeper student learning.
In addition to addressing the acute need for NGSS-aligned teacher professional development strategies, and high quality summer learning opportunities for disadvantages youth, it is our expectation that this “dual use” approach will serve as a model for future teacher professional development programs that seek to bridge learning in formal and informal environments and strengthen academic-community partnerships.
Hexacago Health Academy (HHA) is a game-based science and health curriculum intervention. HHA engages high school students in learning about and addressing major sexual and reproductive health issues and risk behaviors. A board game, Hexacago, depicting the city of Chicago with an overlay of hexagons is the cornerstone of HHA. Students use the board design games and think critically about public health problems in the city of Chicago. HHA uses game-play, interaction with STEM science and health professionals, and mentoring to create a rich, game-based learning experience for high school students. The object of HHA is to improve academic performance, increase science and health career interest, and improve health behaviors among youth living in Chicago.
The goal of the Hawaii Science Career Inspiration grant (HiSCI) is to enhance science education resources and training available to teachers and students in disadvantaged communities of Hawaii in order to ensure a maximally large and diverse workforce to meet the nation’s biomedical, behavioural and clinical research needs. The HiSCI Program will build on the knowledge gained from two past SEPA grants and the University of Hawaii Center for Cardiovascular Research and leverage resources from all corners of the state to accomplish four specific aims:
1) Increase student interest and exposure to health science careers by providing multiple science exposure opportunities and mentoring along the primary, intermediate, and secondary school experiences for at least 300 students a year and a printed and web-based STEM career resource guide and career posters to alert students, counsellors and teachers to all available opportunities;
2) Provide professional development for 20 middle and high school teachers a year, to include scientific content and foster an understanding of the scientific research process, in addition to medical students mentoring intermediate and high school students;
3) Listen, respond to, and connect the science teacher community in Hawaii by holding innovative listening groups for teachers across the state; and
4) Provide tools and supplies for at least twenty K-12 classrooms a year through a mini-grant process and alert teachers across the state to free resources both locally and nationally. The HiSCI Program is highly relevant to Hawaii’s public health and science infrastructure as it will provide an innovative way to gain knowledge of science training needs and will provide many of the resources to teachers and students across the state by leveraging, communicating and sharing existing resources.
Science from the Start (SFTS) was a two-year early childhood program funded by IMLS, with matching funds from the Sciencenter. The goal of SFTS was to empower teachers, parents, and caregivers to do more science with their students and children. Although the SFTS program continues today,this final summary report describes the results of the initial two-year pilot project only.
Pacific Science Center (Science Center) has been a pillar of science education programming in Seattle, Washington since 1962. Through interactive exhibits, planetarium shows, IMAX movies and outreach, the Science Center works to inspire a lifelong interest in science, math and technology. In 2010, the Science Center joined forces with the National Aeronautics and Space Administration (NASA) through NASA Now: Using Current Data, Planetarium Technology and Youth Career Development to Connect People to the Universe. NASA Now was designed to increase the awareness, knowledge and understanding of
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The United States is facing a crisis: not enough students are being trained in the areas of science, technology, engineering and mathematics (STEM) to support and foster economic growth. In response, the State University of New York (SUNY) and the New York Academy of Sciences (The Academy) are collaborating to train SUNY graduate students and post-doctoral fellows to deliver mentoring and STEM content to underserved middle-school children in afterschool programs
While several scientific communities have discussed the emergence of Open Access publishing in depth, in the science communication community this debate has never been central. Scholars in most scientific disciplines have at their disposal Open Access options such as journals, repositories, preprint archives and the like. Ironically enough, a community devoted to the study of science’s communication structures is witnessing this transformation without being directly involved. Both structural and cultural obstacles hamper the growth of an Open Access sector in science communication publishing
The demand for evaluation of science communication practices and the number and variety of such evaluations are all growing. But it is not clear what evaluation tells us - or even what it can tell us about the overall impacts of the now-global spread of science communication initiatives. On the other hand, well-designed evaluation of particular activities can support innovative and improved practices.
Citizen Science has become an umbrella term for a variety of forms of public participation in scientific research. This participation ranges from data gathering to more collaborative and community-led forms. Distinct national and cultural traditions shape how and in what fields nonscientists get involved with scientific projects. While public participation is not new, the recent trend to label many activities as “Citizen Science” raises important questions: Who brings what to Citizen Science projects? What relationships develop between experts, communities and policymakers? Where is the line
DATE:
TEAM MEMBERS:
Simone RoedderGeoffrey Haines-StilesBruce LewensteinYaela GolumbicAyelet Baram TsabariClaudia GoebelLisa PettiboneEmma WeitkampMuseum für Naturkunde Berlin, Leibniz Institute für Evolution and Biodiversity Science
resourceevaluationProfessional Development, Conferences, and Networks
The NISE Network Professional Impacts Summative Evaluation is a longitudinal examination of individual professionals over the final three years of NISE Net funding. This investigation is based on the NISE Network goals for professionals and explores how involvement with NISE Net impacts an individual professional’s sense of community, learning about nano, and use of nano educational products and practices. This evaluation primarily included professional partners who were: (1) Informal Science Educators (ISE): Professionals from science museums and children’s museums implementing informal
Providence Children’s Museum was tasked with examining how children demonstrate their learning and thinking through their play at the museum, and how exhibit activities and resources can be designed to build awareness of these learning processes among children’s caregivers and museum educators. The project team created a set of resources, including an exhibit space called Mind Lab, a Circuit Block activity, and an Observation Tool for caregivers that highlighted different types of behaviors associated with learning that happens naturally while children play. Rockman et al conducted a summative
The profession of explainer is still pretty much undefined and underrated and the training of explainers is many times deemed to be a luxury. In the following pages we make the argument that three main factors contribute to this state of affairs and, at the same time, we try to show why the training of explainers should really be at the core of any science communication institution. These factors are: an erroneous perception of what a proper scientific training means for explainers; a lack of clear definition of the aptitudes and role of explainers required by institutions that are evolving