Capitalizing on the appeal of the PBS KIDS project PLUM LANDING, PLUM RX will research and develop resources to help families and educators infuse environmental science learning into outdoor prescription programs, while ensuring they are appropriate for broad use in other informal settings. The growing outdoor prescription movement is designed to increase the amount of time children spend outside in nature. Programs are structured so that health care providers write "prescriptions" for children to engage in outdoor activity, and informal educators "fill" these prescriptions by facilitating youth and family participation in outdoor activities. There is preliminary evidence that these programs are getting kids outside, but best practices for transitioning "get outside" programs to become "get outside and learn about the environment" programs remain unidentified. PLUM RX is designed to build this knowledge and create resources that are responsive to the needs of both English and Spanish-speaking urban families. The project will work with informal educators and families through multiple cycles of implementation and revision, testing and refining PLUM LANDING resources (animations, videos, games, hands-on science activities, and support materials for informal educators and families), with the goal of designing an effective and accessible PLUM RX Toolkit for national dissemination. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (Science, Technology, Engineering, Mathematics) learning in informal environments. The proposed research is designed to ensure that the PLUM RX Toolkit--the resources and support materials--will meet the needs of educators working in non-specialized urban settings. Education Development Center (EDC) and WGBH developers will collaborate on design-based research at three urban outdoor prescription programs serving low-income families: Philadelphia Nature Rx in Philadelphia, PA; Outdoors Rx in Boston, MA; and Portland Rx Play in Portland, OR. Moving through cycles of implementation, observation, analysis, and revision, the research team will work closely with educators, families, and developers to determine how the programmatic and structural features of the learning environment, the actions of the educators, and the intervention itself can most effectively support children and families' outdoor exploration in urban contexts. Toolkit materials will include resources for kids and families (including Spanish-speaking families) and informal educators (including those who work with families and directly with children in out-of-school settings). Directors from the three urban outdoor prescription programs will contribute to every phase of the research process, including recruiting families and youth who will participate in a weekly sequence of activities. The overarching focus of the analysis process will be on systematically describing the interaction between two dimensions of implementation: What happened during pilot implementations, and the factors that constrained or supported implementation as planned; and the quality of what happened, which will be defined with reference to the intended impacts. EDC will use a structured descriptive coding process to analyze the qualitative evidence gathered through interviews and observations during design and testing periods. Products of the research activities will include: a series of formative memos to the development team; a report mapping changes made to PLUM RX Toolkit materials in response to formative input and the intended impact of those changes; and findings regarding commonalities and differences across sites in the interaction of local contextual factors and the implementation success of the PLUM RX Toolkit. Concord Evaluation Group (CEG) will provide independent, summative evaluation of the project. Through this process, PLUM RX will build broader knowledge about how to design educational resources, geared for both families and informal educators, which respond to the unique challenges of exploring environmental science in urban environments.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This research project leverages ongoing longitudinal research to investigate whether, and if so how, youth from ages 10 to 15 in a diverse, under-resourced urban community become interested and engaged in STEM. The project addresses a global issue; fewer youth choose to major in scientific fields or take science coursework at high school or university levels. These declining numbers result in fewer STEM professionals and fewer scientifically literate citizens who are able to function successfully in an increasingly scientific and technological society. These declines are observed for youth as a whole, but are most pronounced for girls and particular non-white ethnic minorities. Data collected from youth in this community of study, including non-white ethnic minorities, mirrors this decline. NSF funding will support a five-year systematic and systemic process in which project researchers work collaboratively with existing informal and formal educational partners (e.g., museums, libraries, afterschool providers, schools) to develop sets of customized, connected, and coordinated learning interventions, in and out of school, for youth with different backgrounds, needs, and interests, all with the goal of averting or dampening this decline of STEM interest and participation during early adolescence. In addition to new research and community STEM networks, this project will result in a Community Toolkit that includes research instruments and documentation of network-building strategies for use by other researchers and practitioners nationally and internationally. This mixed methods exploratory study has two distinct but interrelated populations - youth and educators from across informal and formal institutions. To develop a clearer understanding of the factors that influence youths' STEM interest development over time, particularly among three youth STEM Interest Profiles identified in a secondary analysis (1-Dislike Math, 2-Like all STEM, 3-Dislike all STEM), the design combines surveys with in-depth interviews and observations. To study educators and institutions, researchers will combine interviews, focus groups, and observations to better understand factors that influence community-wide, data-driven approaches to supporting youth interest development. Research will be conducted in three phases with the goal of community-level change in youth STEM interest and participation. In Phase 1 (Years 1 & 2) four educational partners will develop interventions for a 6th and 7th grade youth cohort that will be iteratively refined through a design-based approach. Educational partners and researchers will meet to review and discuss interest and participation data and use these data to select content, as well as plan activities and strategies within their programs (using a simplified form of conjecture mapping). By Phase 2 (Years 3 & 4) four additional partners will be included, more closely modeling the complex system of the community. With support from researchers support and existing partners, new educational partners will similarly review and discuss data, using these to select content, as well as plan activities consistent with program goals and strategies. Additional interventions will be implemented by the new partners and further assessed and refined with a new 6th and 7th grade cohort, along with the existing interventions of the first four partners. In Phase 3 (Year 5) data will be collected on pre-post community-level changes in STEM interest and participation and the perceived effectiveness of this approach for youth. These data will inform future studies.
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
The Next Generation Science Standards (NGSS) identify an ambitious progression for learning energy, beginning in elementary school. To help the nation's teachers address this challenge, this project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities. Teachers will receive the science and pedagogical content knowledge they need to teach about energy in a crosscutting way across all their science curricula; students will be intellectually engaged in the practice of developing, testing, and revising a model of energy they can use to describe phenomena both in school and in their everyday lives; and formative assessment will guide the moment-by-moment advancement of students' ideas about energy. This project will develop and test a scalable model of PD that will enhance the ability of in-service early elementary teachers to help students learn energy concepts by coordinating formative assessment, face-to-face and web-based PD activities. Researchers will develop and iteratively refine tools to assess both teacher and student energy reasoning strategies. The goals of the project include (1) teachers' increased facility with, and disciplined application of, representations and energy reasoning to make sense of everyday phenomena in terms of energy; (2) teachers' increased ability to interpret student representations and ideas about energy to make instructional decisions; and (3) students' improved use of representations and energy reasoning to develop and refine models that describe energy forms and flows associated with everyday phenomena. The web-based product will contain: a set of formative assessments to help teachers to interpret student ideas about energy based on the Facets model; a series of classroom tested activities to introduce the Energy Tracking Lens (method to explore energy concept using multiple representations); and videos of classroom exemplars as well as scientists thinking out loud while using the Energy Tracking Lens. The project will refine the existing PD and build a system that supports online implementation by constructing a facilitator's guide so that the online community can run with one facilitator.
DATE:
-
TEAM MEMBERS:
Sara LacyRoger TobinNathaniel BrownStamatis VokosRachel ScherrKara GrayLane SeeleyAmy Robertson
Informal science education creates opportunities for the general public to learn about complex health and science topics. Tissue engineering is a fast-growing field of medical science that combines advanced chemistries to create synthetic scaffolds, stem cells, and growth factors that individually or in combination can support the bodies own healing powers to remedy a range of maladies. Health literacy about this topic is increasingly important as our population ages and as treatments become more technologically advanced. We are using a science center planetarium as a projection space to
DATE:
TEAM MEMBERS:
Anna WilsonLaura GonzalezJohn Pollock
Drawing upon critically oriented studies of science literacy and environmental justice, we posit a framework for activism in science education. To make our case, we share a set of narratives on how the River City Youth Club acquired a new green roof. Using these narratives we argue that the ways in which youth describe their accomplishments with respect to the roof reflects a range of subject positions that they carve out and take up over time. These subject positions reveal how activism is a generative process linked to “knowing” and “being” in ways that juxtapose everyday practices with
This article investigates the development of agency in science among low-income urban youth aged 10 to 14 as they participated in a voluntary year-round program on green energy technologies conducted at a local community club in a midwestern city. Focusing on how youth engaged a summer unit on understanding and modeling the relationship between energy use and the health of the urban environment, we use ethnographic data to discuss how the youth asserted themselves as community science experts in ways that took up and broke down the contradictory roles of being a producer and a critic of
The Oregon Museum of Science and Industry (OMSI), in partnership with the J. Craig Venter Institute (JCVI), proposes to develop the Zoo in You: Exploring the Human Microbiome, a 2,000 square foot bilingual (English and Spanish) traveling exhibition for national tour to science centers, health museums, and other relevant venues. The exhibition will engage visitors in the cutting edge research of the National Institutes of Health's (NIH) Human Microbiome Project (HMP) and explore the impact of the microbiome on human health. To enrich the visitor experience, the Zoo in You project will also produce an interactive bilingual website and in-depth programs including science cafes and book groups for adult audiences. JCVI will provide its expertise and experience as a major site for HMP genomics research to the project. In addition, advisors from the Oregon Health & Science University, Multnomah County Library, the Multnomah County Health Department, ScienceWorks Hands-On Museum, Science Museum of Minnesota, and other experts will guide OMSI's development of exhibits and programs. The Institute of Learning Innovation in collaboration with OMSI will evaluate the exhibits, programs, and website. Front-end, formative, remedial, and summative evaluation will be conducted in English and Spanish at OMSI, ScienceWorks, and tour venues. The exhibition's target audience is families and school groups with children in grades 4-12. Latino families are a priority audience and the project deliverables will be developed bilingually and biculturally. The Zoo in You will tour to three venues a year for a minimum of eight years. We conservatively estimate that over two million people will visit the exhibition during the national tour. This project presents a powerful opportunity to inform museum visitors about new discoveries in genomic research, to invite families to learn together, and to present and interpret health-related research findings for diverse audiences. PUBLIC HEALTH RELEVANCE (provided by applicant): Our research education program, the Zoo in You (ZIY): Exploring the Human Microbiome, is relevant to public health because it will inform exhibition visitors and program participants about the significant new research of the NIH's Human Microbiome Project (HMP). Visitors will make connections between basic research, human health, and their own personal experiences. The bilingual (English and Spanish) ZIY exhibits and programs will present research finding and public health information in enjoyable and engaging ways to reach diverse family and adult audiences.
Through "Addressing the Science of Really Gross Things: Engaging Young Learners in Biomedical Science Through a Fulldome Planetarium Show and Supporting Curricula," Morehead Planetarium and Science Center at the University of North Carolina at Chapel Hill, in close collaboration with NIH-funded researchers at the UNC and a leading children's book author, will develop an informal science education media project and a suite of hands-on, inquiry-based curricula based on the media project for use in science centers, museums and schools. This project will build the pipeline of future researchers and create awareness of NIH-funded research by generating interest and excitement among children age 9-13 in the health sciences and related careers and building their science content knowledge. To achieve the objective, the investigators will develop a fulldome planetarium show; create correlating curricula for summer camps, afterschool programs, scout programs, science center field trips, science clubs and schools; and produce a DVD highlighting careers in the health sciences. In addition, the project will use several methods to target populations traditionally underrepresented in the biomedical fields, including featuring professionals from underrepresented populations in the multimedia and curricula products, making outreach visits to counties with large populations traditionally underrepresented in health science research careers, and producing a Spanish-language version of the products. The use of a known brand, "Grossology," is an innovative way to connect to children in the target age range and to encourage the informal science education community to embrace health-science content in their fulldome theaters. In addition, the project's hub-and-spoke approach further encourages adoption of this programming by providing informal science venues with both an engaging experience (hub) and the supporting curricula (the spokes) that is necessary to extend the show's potential for having significant educational impact. A strong project team maximizes the project's likelihood for success. The team includes fulldome producers and educators from Morehead and NIH-funded researchers with expertise in appropriate science content areas. In addition, the investigators have created a network of consultants, advisory board members and evaluators that will create feedback loops designed to ensure high-quality, scientifically-accurate, educationally-effective products. The investigators will use a combination of free and revenue-based dissemination strategies to ensure that the products of this award are broadly distributed. These strategies hold significant promise for creating broad use of this project's products in the nation's science centers, museums and classrooms.
The Oregon Museum of Science and Industry (OMSI), in collaboration with the Small Museum Research Collaborative (SMRC), proposes to create four small bilingual exhibitions in English and Spanish for a national tour to small museums. The exhibitions will focus on current clinical research in nutrition and physical activity and its applications to personal and family wellness. We propose to build four, 700-square-foot traveling exhibitions: two identical exhibitions with a focus on nutrition, and two identical exhibitions with a focus on physical activity. OMSI's SMRC partners bring the experiences and resources of five geographically and thematically diverse small museums to this project. As the lead institution, OMSI brings over 19 years of experience in creating and touring national exhibitions and in collaborative projects with other museums. Front-end, formative, remedial, and summative evaluation will be conducted with family audiences at OMSI and SMRC sites. To extend the visitor experience, OMSI and SMRC will produce related educational materials and programs including a Web site, teachers' guides, small museum staff training, distance-learning programs, and interactive presentations. An SMRC distance-learning network will be created for program dissemination. The project will be developed with the support of local research scientists at the Oregon Health & Science University's (OHSU) General Clinical Research Center (GCRC) and other experts in nutrition and fitness research, health care, and education. The project's audience is family and K-5 school group visitors to small science and children's museums in rural and small urban communities nationwide. Latino families are also a priority audience for the project. Each of the four traveling exhibitions will tour to three venues a year for a minimum of eight years. We conservatively estimate that over two million people will visit the exhibitions during their national tours. This project presents a powerful opportunity to reach museum visitors in rural and underserved communities, to invite families to pursue healthy nutrition and physical activity together, and to present and interpret clinical research findings for diverse audiences.
University of California, Berkeley's Lawrence Hall of Science (LHS), in partnership with the Children's Hospital and Research Center Oakland (CHRCO), proposes to design, develop, implement, and evaluate a hospital-based educational program using pedagogically rich mobile learning experiences with age-appropriate K-12 health sciences content. LHS staff will combine educational technology, curriculum, and learning research expertise to create a new, inquiry based health science program delivered through tablet computers or PlayPads. The interactive media, digital stories, and gaming on PlayPads will feature everyday concepts and important foundations in health education based on the science content and learning frameworks from successful science curricula created at LHS. Hospital patients and their families, visitors, staff, and volunteers will encounter PlayPads with finished waiting room exhibit media stations designed and constructed by Exploratorium Exhibit Services, on teaching carts deployed by hospital educators, and through individual check-out units. PlayPads content will also be available outside of the hospital setting through the Internet for extended use on personal mobile devices and computers. The mission of the PlayPads program is to increase exposure of the hospital-going public to topics directly relevant to healthy lives and families through mobile technology. PlayPads will be an inviting experience for youth, framing interactions with driving questions and common misconceptions to inspire the curiosity of participants. Youth ages 8 to 16 will experience wide-ranging interactives including: games that show the hazards of smoking, simulations of blood flow through the heart, brain quizzes to hone memory function, or lively info-graphics about the nutritional shortcomings of junk food. Given the recent strides in the affordability of touch screen technology and the rapid adoption of mobile computing ecosystems, this is an unprecedented time to build a ubiquitous health educational program within a contextually relevant environment like a hospital. PlayPads will be a model for delivering health education content in a unique educational setting leveraging the great strides in consumer mobile technology. By working with a strong, local hospital partner that serves a highly diverse ethnic and socioeconomic population, LHS staff will ensure the portability of the program for future healthcare providers. With the extensive private and public networks of both LHS and CHRCO, PlayPads will potentially have a lasting impact on health education efforts in the San Francisco Bay Area and beyond.
The Nature of Aging project presents the biology of senescence to families and K-12 students through interactive exhibits and museum experiences. Senescence is perhaps the most complex and least understood biological process, yet it is also a universal experience marked by signs we all recognize. Aging has great relevance in the twenty-first century as medical advances and demographic shifts accelerate the growth of our elder population, and scientific research narrows in on the central mysteries of the aging process. In partnership with the Center for Healthy Aging at the Oregon Health and Science University (OHSU) and national experts in gerontology research and education, the Nature of Aging project has produced a 2,500-square-foot permanent exhibition, Amazing Feats of Aging, which opened in OMSI-s Life Science Hall in May 2003. A duplicate 2,500 traveling exhibition was also produced and began its national tour in June 2004. The proposed eight-year tour to an average of three venues per year is funded by exhibition rental fees and significantly extends the life and audience of the project. Visitors to the Amazing Feats of Aging exhibition explore comparative aging across the animal kingdom, healthy aging, and the aging of the brain. The exhibition is intended for a family audience, and activities are designed to foster intergenerational interaction. The exhibit experience is enriched by a series of educational materials and programs including a teachers- guide, an interactive website, demonstrations, and activities in OMSI-s Life Science Lab. The Amazing Feats of Aging exhibition was made possible by the contribution of expertise, photographs, video footage, software, prepared slides and specimens from scientists and researchers across the country, including: Aging Concerns, Florida Fish and Wildlife Conservation Commission, OHSU, Oregon Department of Fish and Wildlife, National Institute on Aging, Oregon Zoo, Portland State University, University ofCalifornia, San Francisco, University of Colorado, Boulder, University of Idaho, University of Illinois at Urbana-Champaign, University of Virginia, and Washington State University.