Beginning in September 2015, with funding from the National Science Foundation (NSF), Twin Cities Public Television (TPT) initiated the three-year project Latina SciGirls: Promoting Middle School-Age Hispanic Girls' Positive STEM Identity Development. The cornerstone of the project is a fourth season of the Emmy Award-winning television and transmedia project SciGirls, to premiere in 2017, in this case involving six half-hour SciGirls episodes filmed in Spanish showing groups of Hispanic girls and their Hispanic STEM mentors investigating science and engineering problems. The television
As part of the development work of Latina SciGirls, the independent evaluation firm Knight Williams Inc. conducted a front-end evaluation focused on gathering input from the project’s primary public audiences (Latina girls and their parents/guardians) and professional audiences (the project’s advisers and partners). A total of 86 participants representing these diverse audience perspectives were asked to review an episode of the SciGirls program Hábitat en Caos/Habitat Havoc and two role model scientist profile videos featuring Karin Block and Victoria Velez. Scheduled early in Year 1 of the
In prior research and development, the team developed the Mathalicious intervention for middle and high school students to improve mathematical thinking. Each Mathalicious lesson revolves around applying a real world example to learn math (e.g., Is college worth the cost). In this project, the team will develop and test a prototype of an adaptive platform through which students will need to demonstrate mastery prior to being able to advance to more complicated procedural, conceptual, and analytical levels. In the Phase I pilot research with three Grade 8 classrooms, the team will examine whether the prototype functions as planned, if teachers are able to implement it with students, and whether students are engaged.
In prior research and development, the team developed WuzzitTrouble, an iPhone and iPad gaming app where players solve problems using number sense mathematical strategies. This project will develop and test a prototype of an adaptive engine for this game, intended to tailor gameplay to the skill levels of individual students and to provide support (or scaffold learning) for students with weaker skills. The Phase I pilot will involve six Grade 6 classrooms and 100 students. The study will examine whether the prototype functions as planned, and if students of different skill levels are engaged and able to play the game with the support of the prototype’s adaptive engine.
Purpose: The team will fully develop and test three puzzle-based math games that adaptively assess and support student learning in middle school classrooms. A principle objective of middle school math is to prepare students for more complicated and advanced STEM topics, providing the foundation for a wide variety of college majors and careers. Students who struggle in math in grade 5 and 6 are more likely to show deficits as coursework turns to topics in algebra. However, in many classrooms, commonly used progress monitoring instruments often do not adjust in ease or difficulty based on student performance, and do not provide data teachers can use to tailor instruction to meet the needs of students.
Project Activities: During Phase I (completed in 2015), the team developed a prototype of an adaptive engine for Wuzzit Trouble, a previously developed app where players rotate a virtual wheel to solve puzzles by applying number sense mathematical strategies. The engine tailors gameplay to the skill level of individual students in real time, providing tips and support to students having difficultly or by making challenges more difficult for those who master puzzles. The research team conducted a pilot study at the end of Phase I in order to test the prototype. A little more than 200 grade 5 and 6 students and six teachers participated over two weeks. Researchers found that the prototype functioned as intended and that teachers successfully used the game before, during, and after class as a supplement to instruction. They learned that 65% of students enjoyed using the prototype and 46% indicated that the game adjusted to the right level of difficulty during gameplay. In Phase II, the team will develop two new games on topics including algebraic thinking and problem solving, will strengthen and validate the adaptive engine, and will build out the dashboard to report formative and summative assessment results. After development is complete, the researchers will carry out a larger pilot study to assess the usability and feasibility, fidelity of implementation, and promise of the three games to improve student learning over a 9-week period. Thirty-two grade 5 and 6 math classrooms from 16 schools will participate. One classroom from each school will be randomly assigned to use the games and half will continue with business-as-usual procedures. The researchers will compare pre-and-post scores for student learning on standardized measures of pre-algebra topics. They will also track teacher implementation.
Product: The final product will include a suite of three app-based puzzle games aligned to national math standards for number sense, algebraic thinking, and problem solving. The games will be designed for use in grade 5 and 6 classrooms where students develop and apply content expertise to solving challenges. The games will include an adaptive engine that assesses and adjusts content based on student level of performance, a back-end system to organize data, and a reporting dashboard to present measures of student performance, persistence, and creativity. The project team will also develop teacher resources for suggesting how to incorporate games and activities into classroom instructional practice to reinforce lesson plans and learning.
This project team will develop and test a prototype of Planet 3, a multi-media online platform to apply real world problems (e.g., pollution, overpopulation) to middle school earth and life science learning. The prototype will include videos, simulations, and games to allow opportunities for students to explore problem sets, collect and analyze data, and draw conclusions. At the end of Phase I in a pilot study with two classrooms, the researchers will examine whether the prototype functions as planned, where teachers can implement the prototype within classroom practice, and if students are engaged while examining real-world problems.
This report introduces a framework to support learning in library and museum makerspaces. The framework demonstrates how we can create the conditions for ambitious learning experiences to unfold within the making experience.
DATE:
TEAM MEMBERS:
Children's Museum of PittsburghInstitute of Museum and Library ServicesPeter Wardrip
This project team will develop and test a prototype an online platform to facilitate engineering project challenges within K–12 classrooms across many schools. The prototype will include a content management platform to enable a high volume of challenges for students to conduct projects on a broad range of STEM topics, such as computer coding, digital modeling, or producing simulations. In a pilot study with one school, the researchers will examine whether the prototype functions as planned, whether teachers are able to incorporate challenges within instruction practice, and if multiple classrooms are able to participate in a challenge and produce a product that in response to a challenge.
A three day TTT session was held in May 2015 at Twin Cities PBS in St. Paul, MN to train nine representatives from NGCP State Collaboratives in the SciGirls Seven and Citizen SciGirls project materials (episodes, activities). NGCP chose the nine leaders (from nine states) through an application process specifically targeting regions who had not previously received training on SciGirls research-based strategies. These trainers were then expected to hold two training sessions with up to 30 educators at each session between fall of 2015 and fall of 2016. Fourteen sessions were held reaching
The independent evaluation team subsequently undertook a formative evaluation to provide the production team with feedback on issues that arose from the front-end evaluation findings and from tpt’s early production work on the first Season Four episode and STEM role model videos.
As part of the development work of Latina SciGirls, the independent evaluation firm Knight Williams Inc. conducted a front-end evaluation focused on gathering input from the project’s primary public audiences (Latina girls and their parents/guardians) and professional audiences (the project’s advisers and partners).
Appendix includes logic model.
There was a time when “science comic” meant a straightforward collection of pictures with a lot of captions and a few word balloons. The main character would recite a series of facts and definitions, and any attempt at plot or character development would be interrupted by a lecture. The comics featured more diagrams than action scenes, with clunky and expository dialogue. Rather than comics making science enjoyable, science made comics boring.
Not anymore. The new generation of science graphic novels is designed as much to entertain as to educate. “The students love to read the books on