Summary
Girlstart’s mission is to increase girls’ interest and engagement in STEM through innovative, nationally-recognized informal STEM education programs. Girlstart examines in this report how STEM education directed toward elementary school girls influences long-term readiness and participation to math and science learning. This report compares Girlstart After School participants’ academic performance to nonparticipant performance. Specifically, it examines how Girlstart After School influences science STAAR performance and course enrollment in subsequent elementary and early middle
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This media and technology project will scale up Youth Radio's proven model of STEM education through youth-driven multimedia journalism and related app development using the MIT App Inventor. A new Youth News Network (YNN) will implement a nationwide feeder system of youth reporters and educators using the previously developed and proven STEM curriculum. Previous research and evaluation has demonstrated that this model can engage underserved youth and put them in leadership positions in technological innovation. Key deliverables include the YNN STEM Desk that will produce 15-20 STEM-related stories each year; bootcamps (1-3 day workshops) training youth around the country focusing on app development and media links; and new toolkits providing resources to help with app development, data analysis and other STEM-specific skills. Project partners include MIT Media Lab, National Public Radio, Best Buy's Teen Tech Centers, National Writing Project, Computer Clubhouses, and PBS Learning Media among others.
Over the previous eight years, research and evaluation findings had been used to refine the project. These data served as the foundation for this scale-up project. The research conducted by the investigator and the Scholar-in-Residence in this scale-up uses an embedded ethnographic approach that combines field notes, recorded meetings and discussions, media artifacts, etc.--data that is transcribed and coded for indicators of STEM learning and critical computational literacy. The external summative evaluation will build on prior evidence regarding how this unique model engages youth and impacts their skills in STEM related media and technology.
DATE:
-
TEAM MEMBERS:
Elisabeth SoepEllin O'LearyHarold Abelson
While the term 'failure' brings to mind negative associations, there is a current focus on failure as a driver of innovation and development in many professional fields. It is also emerging from prior research that for STEM professionals and educators, failure plays an important role in designing and making to increase learning, persistence and other noncognitive skills such as self-efficacy and independence. By investigating how youth and educators attend to moments of failure, how they interpret what this means, and how they respond, we will be better able to understand the dynamics of each part of the experience. The research team will be working with youth from urban, suburban and rural settings, students from Title I schools or who qualify for free/reduced-price lunches, those from racial and ethnic minority groups, as well as students who are learning English as a second language. These youth are from groups traditionally underrepresented in STEM and in making, and research indicates they are more likely to experience negative outcomes when they experience failure.
The intellectual merit of this project centers on establishing a baseline understanding of how failure in making is triggered and experienced by youth, what role educators play in the process, and what can be done to increase persistence and learning, rather than failure being an end-state. The research team will investigate these issues through the use of qualitative and quantitative research methods. In particular, the team will design and evaluate the effectiveness of interventions on increasing the abilities of youth and educators in noticing and responding to failures and increasing positive (e.g., resilience) outcomes. Research sites are selected because they will allow collection of data on youth from a wide range of backgrounds. The research team will also work to test and revise their hypothesized model of the influence of factors on persistence through failures in making. This project is a part of NSF's Maker Dear Colleague Letter (DCL) portfolio (NSF 15-086), a collaborative investment of Directorates for Computer & Information Science & Engineering (CISE), Education and Human Resources (EHR) and Engineering (ENG).
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments.
The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
Born from individual basement tinkerers and garage-mechanic hobbyists, the Maker Movement has evolved to support a strong community among makers. Makers increasingly gather together in makerspaces, hackerspaces, tech shops, and fab labs, where groups composed of diverse ages, genders and backgrounds are motivated to learn with and from one another how to use and combine materials, tools, processes, and disciplinary practices in novel ways. The growth of the international Maker Faires’ annual showcases of makers’ inventions and investigations have become celebrated meccas of maker culture
This infographic presents a visual summary of a user study of the InformalScience.org website, which was conducted in 2016. The study used online surveys, task-based interviews, and web analytics to explore the following questions: (1) Who are the site's users and what content do they value? (2) Does the site clearly convey its purpose to visitors? and (3) Are users able to navigate the site and use search tools effectively?
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This Broad Implementation project would scale up the CryptoClub Project, an afterschool and online program designed to engage middle school youth in mathematics and cryptography. The project builds on previous successful work and evaluation that is ready for scale up using a train-the-trainer model implemented through a partnership with the National Girls Collaborative. The project will train 160 new CryptoClub leaders who will then train 800 new leaders at 20 hub sites reaching 9600 students. In addition, professional development modules and webinars will continue to refresh leader skills. Other project components include an online multiplayer cryptography game, weekly challenges through social media, and digital cryptology badges for students.
The research uses a think-aloud method with students as they actually attempt to solve the cryptology problems using mathematical thinking. Three think-aloud studies will be performed during the Project. The research team will code transcripts of the interviews for evidence of the mathematical thinking intended to be addressed by each activity, as well as capturing unexpected kinds of thinking. Tasks will also be rated according to the type of knowledge elicited. A written report will include statistical analyses of the think-aloud and interview responses, interpreted in light of the overall CryptoClub goals. The findings will contribute to both future research efforts and practice. The evaluation by EDC uses a quasi-experimental design, which assesses project outcomes for trainers, leaders, students, and Internet users. EDC will also investigate the fidelity to the CryptoClub model as it is scaled up. These studies have strong potential for informing numerous other projects that are at a stage where scale up is under consideration.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The National Association of Math Circles (NAMC) will convene the Math Circle-Mentor and Partnership (MC-MAP) Workshop in late 2016. The proposed MC-MAP workshop will build the field's understanding of the training content and mechanisms that enhance the knowledge and skill development of participants in Math Circles. The workshop will bring mentors from experienced Math Circle leaders together with novice Math Circle leaders to develop the expertise of the notice leaders and their group to develop their expertise in facilitating math circle activities and in organizing related events. The approximately 180 Math Circles currently operating across the nation enlist mathematics professionals to share their passion for mathematics with K-12 students, teachers, and the general public in contexts that emphasize exploration, problem solving and discovery. This initial conference and Math Circle trainings informed by this conference will help build a community of practice around Math Circles through which novice and existing leaders are connected, encouraged and inspired.
The MC-MAP workshop will include structured planning as well as guided observation and structured debriefing of a demonstration Math Circle sessions. The workshop design will be grounded in research related to effective adult learning and to discovery-based mathematics. The workshop will serve as a training prototype that will assist the National Association of Math Circles to identify effective training formats and materials for both experienced and novice Math Circle leaders. Pre- and post- conference surveys of Math Circle leaders will produce data to be used in planning and designing future trainings. The NAMC will share key findings from the workshop evaluation and workshop resources not only with its membership, but also with other mathematics K-12 outreach programs. Workshop materials will address recruiting and serving diverse participants in Math Circles, including girls and women, persons with disabilities, students from varied socioeconomic backgrounds and underrepresented minorities in STEM.
Youth environmental education (EE) programs often serve as gateway experiences in which diverse audiences engage in informal science learning. While there is evidence that these programs can have positive impacts on participants, little empirical research has been conducted to determine what makes one program more successful than another. To be able to conduct such research, this Exploratory Pathways study will (1) develop and statistically validate ways to measure meaningful outcomes for participants across a variety of programs and (2) test observational methods that will enable research that can determine which elements of program delivery most powerfully influence participant engagement and learning outcomes in different contexts. These efforts will include consultations with diverse subject matter experts from the National Park Service, nature centers, and academia; survey research with participants in afterschool and free-choice EE programs; and observations of EE programs designed to fine tune the measurement of program delivery elements and student engagement. Developing valid and reliable outcomes measures and observational protocols will enable a larger investigation that will specifically address the following research question: What program characteristics lead to the best learning outcomes for program participants in different contexts? This research will result in empirically tested guidelines that will enable educators to design and deliver more effective programs for a wide range of audiences in a wide range of contexts. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This effort will refine methods necessary to undertake an unprecedented study (and future AISL Research in Service to Practice proposal) to examine the linkages between pedagogical approaches, participant engagement, and learning outcomes in informal STEM-focused youth EE programs. The larger study will involve systematically observing a large number of programs to assess the use of different approaches and to link those approaches to engagement and learning outcomes through both observation and survey research. In this current study the team will develop and refine crosscutting outcome measures to ensure validity, reliability, and sensitivity by drawing upon the literature and consultation with key stakeholders to develop suites of indicators for subsequent psychometric testing and revision. They will also refine observational techniques for assessing pedagogical approaches through extensive testing of inter-rater reliability. Finally, techniques for measuring participant engagement, incorporating both observational techniques and retrospective participant surveys will be refined. The work will be conducted by researchers at Clemson University and Virginia Tech, in partnership with the U.S. National Park Service, the North American Association for Environmental Education, and the American Association of Nature Center Administrators. This work represents the first step in a longer research process to determine the "best practices" most responsible for achieving outcomes in a wide range of contexts.
The Wayne State University Math Corps is a mathematics enrichment and mentoring program that operates during summers and on Saturdays. The curriculum and the teach pedagogies in this informal learning program have documented success of supporting youths' mathematics learning as well as raising achievement levels in school. Through rigorous research and evaluation, this project seeks to analyze and understand the nature, extent, and reasons for Math Corps' success with youth learning in Detroit as well as the processes of program replication in three sites: Cleveland, OH; Utica, NY; and Philadelphia, PA. As such, this project will deepen understandings of program replication and of addressing the needs of youth in economically-challenged communities in order to promote mathematics learning.
The project's research studies will assess the multiple factors that make Math Corps successful with youth in Detroit and document the implementation of the program to the three replication sites. Research methods include discourse analyses, surveys, interviews, and pre/post-tests. The project will also conduct a retrospective evaluation of Math Corps based on quantitative datasets regarding both near-term and long-term youth outcomes.
This projects is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
DATE:
-
TEAM MEMBERS:
Steve KahnStephen ChrisomalisTodd KubicaCarol Philips-BeyFrancisca Richter
On August 21, 2017, a total solar eclipse will traverse the United States from Oregon to South Carolina. Millions of Americans will witness totality, in which the Moon completely blocks the Sun, and over 500 million people across North America will experience a partial eclipse. In this project, the American Astronomical Society (AAS) will forge an umbrella organization consisting of an eclipse project manager, a centralized website of resources, and a mini-grants program to coordinate and facilitate local and national activities that will educate the public about the science of this rare event. The project will leverage this fascinating display of beauty to engage as many people as possible in the endeavor of science.
This project will involve scientists, educators, and amateur and professional eclipse observers in developing extensive plans for unique outreach activities to reach a significant fraction of the diverse U.S. population. The goal is to use the eclipse, which will generate significant media attention, to educate a broad audience about the associated science and to encourage young people from widely diverse backgrounds to pursue careers in science. Special emphasis will be placed on citizen science projects and on educational activities targeting groups that are underrepresented in STEM disciplines. A mini-grants program will be established to fund efforts specifically targeting underrepresented groups in order to increase their participation. The evaluation plan will focus on the utilization of the materials on the website and the learning gains of participants in specific activities funded by the mini-grants. All lessons learned will be collated in a publicly available formal report and will lay the groundwork for a strategic plan to fully capitalize on the next U.S.-based solar eclipse in 2024. Because this project aligns well with the objectives of multiple NSF directorates, this award is co-funded by the Division of Undergraduate Education and the Division of Research on Learning in the Directorate for Education and Human Resources; the Division of Astronomical Sciences in the Directorate for Mathematical and Physical Sciences; and the Division of Atmospheric and Geospace Sciences in the Directorate for Geosciences.
DATE:
-
TEAM MEMBERS:
Kevin MarvelAngela SpeckShadia HabbalRichard Fienberg
resourceprojectProfessional Development, Conferences, and Networks
This project will convene a workshop focused on digital micro-credentials, also known as digital badges, and the role they might play in the high-stakes process of college admission. Digital micro-credentials represent one potential mechanism for broadening access for underrepresented groups to higher education. Digital micro-credentials enable students to present a broader view of themselves as learners that connects different domains of their lives: academic, social, and personal interest-driven. As such, digital micro-credentials enable students to represent expertise and potential in ways that go beyond traditional high school grade point averages and standardized test scores. The workshop addresses questions such as: Can micro-credentials serve as valid and reliable measures of learning? What "gap" in current assessment practices can be filled by micro-credentials? What is required for micro-credentials to be useful as evidence of preparation for future learning in the college admission process?
The project's principal investigators will employ case studies, drawn from the Chicago City of Learning network (chicagocityoflearning.org) and Mouse (mouse.org) in New York City, to better understand the use of micro-credentials for learning in STEM-focused extracurricular activities. During the workshop, participants with expertise in student learning from a range of perspectives will design representations of the knowledge or skills demonstrated by students. Participating admissions officers and STEM faculty will critique the designs with respect to how well the designs demonstrate evidence of preparation for future learning by students. The workshop outcomes will include sample designs of micro-credentials that show promise to both promote learning and support college admissions. The workshop will also result in a white paper discussing the potential of micro-credentials for college admission in STEM fields by youth from underrepresented groups.