Increasing demand for curricula and programming that supports computational thinking in K-2 settings motivates our research team to investigate how computational thinking can be understood, observed, and supported for this age group. This study has two phases: 1) developing definitions of computational thinking competencies, 2) identifying educational apps that can potentially promote computational thinking. For the first phase, we reviewed literatures and models that identified, defined and/or described computational thinking competencies. Using the model and literature review, we then
For the past two decades, researchers and educators have been interested in integrating engineering into K-12 learning experiences. More recently, computational thinking (CT) has gained increased attention in K-12 engineering education. Computational thinking is broader than programming and coding. Some describe computational thinking as crucial to engineering problem solving and critical to engineering habits of mind like systems thinking. However, few studies have explored how computational thinking is exhibited by children, and CT competencies for children have not been consistently defined
The aim of this review of the literature is to identify what we already know about the engagement of children aged under eight in makerspaces. Given the limited literature in the area, the review takes a broader look at makerspaces for older children where relevant. This is not a systematic review; its aim is not to offer an exhaustive account of all of the research conducted in the area. Rather, this narrative review provides an introduction to key aspects of research on makerspaces and enables the identification of themes dominant in the field, and those areas where more research is needed
DATE:
TEAM MEMBERS:
Jackie MarshKristiina KumpulainenBobby NishaAnca VelicuAlicia Blum-RossDavid HyattSvanborg JónsdóttirRachael LevySabine LittleGeorge MarusteruMargrét Elísabet ÓlafsdóttirKjetil SandvikFiona ScottKlaus ThestrupHans Christian ArnsethKristín DýrfjörðAlfredo JornetSkúlína Hlíf KjartansdóttirKate PahlSvava PétursdóttirGísli ThorsteinssonUniversity of Sheffield
The Oregon Museum of Science and Industry (OMSI), in collaboration with neuroscientists at the Oregon Health & Science University (OHSU), museum professionals, and community partners, proposes to create a 1,000 to 1,500-square-foot traveling exhibition, accompanying website, and complementary programming to promote public understanding of neuroscience research and its relevance to healthy brain development in early childhood. The exhibition and programs will focus on current research on the developing brain, up to age 5, and will reach a national audience of adult caregivers of young children and their families, with a special emphasis on Latino families. The project will be developed bi-culturally and bilingually (English/Spanish) in order to better engage underrepresented Latino audiences. The exhibition and programs will be designed and tested with family audiences.
The exhibition project, Interactive Family Learning in Support of Early Brain Development, has four goals that primarily target adult caregivers of children up to age 5:
Foster engagement with and interest in neurodevelopment during early childhood
Enhance awareness of how neuroscience research leads to knowledge about healthy development in early childhood
Inform and empower adult caregivers to enrich their children’s early learning experiences
Reach diverse family audiences, especially Latino caregivers and their families
A collaborative, multidisciplinary team of neuroscience researchers, experts in early childhood education, museum educators, and OMSI personnel with expertise in informal science education and bilingual exhibit development will work together to ensure that current science is accurately interpreted and effectively presented to reach the target audiences. The project will foster better public understanding of early brain development and awareness and confidence in caregivers in using play to enrich their children’s experiences and support healthy brain development. Visitors will explore neuroscience and early childhood development through a variety of forms—multi-sensory, hands-on interactive exhibits, graphic panels, real objects, facilitated experiences, and an accompanying website.
Following the five-year development process, the exhibition will begin an eight-year national tour, during which it will reach more than one million people.
Ruff Family Science is an exploratory project funded by the National Science Foundation (NSF) that aims to foster joint media engagement and hands-on science exploration among diverse, low-income parents and their 4- to 8-year-old children. Building on the success of the PBS series FETCH! with Ruff Ruffman, the project leverages FETCH’s funny and charismatic animated host, along with its proven approach to teaching science, to inspire educationally disadvantaged families to explore science together. More specifically, the project is undertaking a research and design process to create prototype
Informal science learning (ISL) organizations that are successful at providing meaningful science, technology, engineering, arts, and mathematics (STEAM) experiences for Latino children, youth, and their families share some common traits. They have leaders and staff who believe in the importance of developing culturally relevant models and frameworks that meet the needs and acknowledge the legacy of STEAM in Latino communities. Such organizations are willing to take risks to create experiences that are culturally meaningful, garner funding and implement programs by working closely with their
DATE:
TEAM MEMBERS:
Cheryl JuarezVerónika NúñezExploratorium
Community collaboration and empowerment was identified by the GENIAL organizers as an important theme to include in the Summit. Informal STEM learning (ISL) organizations strive to engage Latino audiences in their science, technology, engineering, and math (STEM) programming on a long-term basis and recognize the importance of understanding the needs, motivations, interests, and challenges of the diverse Latino community in the context of STEM participation. An effective way to collaborate with a community is to involve them as equal partners in the co-development of ISL experiences. A key
DATE:
TEAM MEMBERS:
Salvador AcevedoPaul DusenberyExploratorium
resourceresearchMuseum and Science Center Programs
This article focuses on the efforts of the Collaborative for Early Science Learning (CESL), a group of six museums led by the Sciencenter in Ithaca, New York, that partner with their local Head Start programs to provide training for teachers and opportunities for family engagement. These efforts address the gap between children’s readiness to explore science through everyday experiences and adults’ support. CESL believes that hands-on professional development (PD) opportunities for teachers and families can reduce adult discomfort with facilitating science programming and increase their
This study explored the effect of depth of learning (as measured in hours) on creativity, curiosity, persistence and self-efficacy. We engaged ~900 parents and 900 students across 21 sites in Washington, Chicago, Los Angeles, New York, Alabama, Virginia and the United Arab Emirates, in 5-week (10-hr) Curiosity Machine programs. Iridescent trained partners to implement the programs. Thus, this analysis was also trying to establish a baseline to measure any loss in impact from scaling our programs and moving to a “train-the-trainer” model. We analyzed 769 surveys out of which 126 were paired. On
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will develop a national infrastructure of state and regional partnerships to scale up The Franklin Institute's proven model of Leap into Science, an outreach program that builds the capacity of children (ages 3-10) and families from underserved communities to participate in science where they live. Leap into Science combines children's science-themed books with hands-on science activities to promote life-long interest and knowledge of science, and does so through partnerships with informal educators at libraries, museums, and other out-of-school time providers. Already field-tested and implemented in 12 cities, Leap into Science will be expanded to 90 new rural and urban communities in 15 states, and it is estimated that this expansion will reach more than 500,000 children and adults as well as 2,700 informal educators over four years. The inclusion of marginalized rural communities will provide new opportunities to evaluate and adapt the program to the unique assets and needs of rural families and communities.
The project will include evaluation and learning research activities. Evaluation will focus on: 1) the formative issues that may arise and modifications that may enhance implementation; and 2) the overall effectiveness and impact of the Leap into Science program as it is scaled across more sites and partners. Learning research will be used to investigate questions organized around how family science interest emerges and develops among 36 participating families across six sites (3 rural, 3 urban). Qualitative methods, including data synthesis and cross-case analysis using constant comparison, will be used to develop multiple case studies that provide insights into the processes and outcomes of interest development as families engage with Leap into Science and a conceptual framework that guides future research. This project involves a partnership between The Franklin Institute (Philadelphia, PA), the National Girls Collaborative Project (Seattle, WA), Education Development Center (Waltham, MA), and the Institute for Learning Innovation (Corvallis, OR).
In this case study, we highlight the work of the Bay Area STEM Ecosystem, which aims to increase equity and access to STEM learning opportunities in underserved communities. First, we lay out the problems they are trying to solve and give a high level overview of the Bay Area STEM Ecosystem’s approach to addressing them. Then, based on field observations and interviews, we highlight both the successes and some missed opportunities from the first collaborative program of this Ecosystem. Both the successes of The Bay Area STEM Ecosystem--as well as the partners’ willingness to share and examine