There is a dearth of prominent STEM role models for underrepresented populations. For example, according to a 2017 survey, only 3.1% of physicists in the United States are Black, only 2.1% are Hispanic, and only 0.5% are Native American. The project will help bridge these gaps by developing exhibits that include simulations of historical scientific experiments enacted by little-known scientists of color, virtual reality encounters that immerse participants in the scientists' discovery process, and other content that allows visitors to interact with the exhibits and explore the exhibits' themes. The project will develop transportable, interactive exhibits focusing on light: how we perceive light, sources of light from light bulbs to stars, uses of real and artificial light in human endeavors, and past and current STEM innovators whose work helps us understand, create, and harness light now. The exhibits will be developed in three stages, each exploring a characteristic of light (Color, Energy, or Time). Each theme will be explored via multiple deliveries: short documentary and animated films, virtual reality experiences, interactive "photobooths," and technology-based inquiry activities. The exhibit components will be copied at seven additional sites, which will host the exhibits for their audiences, and the project's digital assets will enable other STEM learning organizations to duplicate the exhibits. The exhibits will be designed to address common gaps in understanding, among adults as well as younger learners, about light. What light really is and does, in scientific terms, is one type of hidden story these exhibits will convey to general audiences. Two other types of science stories the exhibits will tell: how contemporary research related to light, particularly in astrophysics, is unveiling the hidden stories of our universe; and hidden stories of STEM innovators, past and present, women and men, from diverse backgrounds. These stories will provide needed role models for the adolescent learners, helping them learn complex STEM content while showing them how scientific research is conducted and the diverse community of people who can contribute to STEM innovations and discoveries.
The project deliverables will be designed to present complex physics content through coherent, immersive, and embodied learning experiences that have been demonstrated to promote engagement and deeper learning. The project will research whether participants, through interacting with these exhibits, can begin to integrate discrete ideas and make connections with complex scientific content that would be difficult without technology support. For example, students and other novices often lack the expertise necessary to make distinctions between what is needed and what is extra within scientific problems. The proposed study follows a Design-Based Research (DBR) approach characterized by iterative cycles of data collection, analysis, and reflection to inform the design of educational innovations and advance educational theory. Project research includes conceiving, building, and testing iterative phases, which will enable the project to capture the complexity of learning and engagement in informal learning settings. Research participants will complete a range of research activities, including focus group interviews, observation, and pre-post assessment of science content knowledge and dispositions.
By showcasing such role models and informing about related STEM content, this project will widen perspectives of audiences in informal learning settings, particularly adolescents from groups underrepresented in STEM fields. Research findings and methodologies will be shared widely in the informal STEM learning community, building the field's knowledge of effective ways to broaden participation in informal science learning, and thus increase broaden participation in and preparation for the STEM-based workforce.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Todd BoyetteJill HammJanice AndersonCrystal Harden
In this participatory research project, a partnership between the Kitty Andersen Youth Science Center (KAYSC) and the Department of Evaluation and Research in Learning at the Science Museum of Minnesota, participants are working to rename and reclaim theory and research methods so as to foster relevance and equity. We have renamed the theory of science capital: "science capitxl" signals its roots in equity work and invites questioning. We are using what we have called "embedded research practices" for data generation and analysis. This poster was shared at the 2019 AISL PI meeting.
Young people learn about science, technology, engineering, and math (STEM) in a variety of ways and from many sources, including school, the media, personal experiences, and friends and family. Yet STEM participation and identification by youth are not equal across social, economic, and cultural communities. This project will study a long-term, out-of-school program for high school-age youth, who are from groups under-represented in STEM academics and careers: girls, youth from low-income households, and youth of color. Located in the urban context of the Science Museum of Minnesota, the Kitty Andersen Youth Science Center (KAYSC) engages youth in applying culturally rich STEM content to work toward social justice and community building. Specifically, this project will examine how the learning practices of the KAYSC model support youth in identifying with, engaging in, and participating in STEM. Through studying the KAYSC's STEM Justice model, which centers youth as learners, teachers, and leaders who address critical community issues through STEM, this project will develop resources that informal science educators in a variety of contexts and programs can use to promote positive social change, equity, inclusion, and applied STEM learning.
The Science Museum of Minnesota will use design-based implementation research to study this model. This research will draw on and further the emerging theoretical framework of science capital. Science capital attempts to capture multiple aspects of science learning and application, including science knowledge, social and cultural resources, and science-related behaviors and practices. Empirically developing the theory of science capital has the potential to build concrete understanding of how to address inequalities in science participation. Four teams will work independently and collaboratively to do so: an adult research team, a high school youth research team, a practitioner team, and a co-design team composed of representatives from the other three teams. Research teams will collect data in the form of observations, semi-structured interviews, practitioner activity reports, artifacts, and the experience sampling method. Initial cycles of design will occur at the Science Museum of Minnesota as researchers and practitioners document, analyze, and iteratively design learning practices within the STEM Justice model. In the second half of the grant, the team will work with an external out-of-school time youth leadership site to implement the redesigned model. Participatory research and design methods involving both youth and adults can advance understanding of what makes out-of-school time STEM learning meaningful, relevant, and successful for marginalized youth and their communities. Grounded in culturally and socially relevant, community-based resources and programming, this project will study how leveraging STEM out-of-school time learning connected to social justice can broaden access to STEM as well as develop workforce, and leadership, and STEM skills by under-represented youth. The project also builds staff capacity for promoting equity and access in informal learning settings.
This project is being funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.