SciGirls CONNECT 2 is a three-year NSF project that examines how the gender equitable and culturally responsive strategies currently employed in the SciGirls informal STEM educational program influences middle school girls’ STEM identity formation.
In this participatory research project, a partnership between the Kitty Andersen Youth Science Center (KAYSC) and the Department of Evaluation and Research in Learning at the Science Museum of Minnesota, participants are working to rename and reclaim theory and research methods so as to foster relevance and equity. We have renamed the theory of science capital: "science capitxl" signals its roots in equity work and invites questioning. We are using what we have called "embedded research practices" for data generation and analysis. This poster was shared at the 2019 AISL PI meeting.
This project supports the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC), a national Research Coordination Network of Broader Impacts to support professionals who assist researchers to design, implement, and evaluate the Broader Impacts activities for NSF proposals and awards. All NSF proposals are evaluated not only on the Intellectual Merit of the proposed research, but also on the Broader Impacts of the proposed work, such as societal relevance, educational outreach, and community engagement. Many institutions have begun employing Broader Impacts support professionals, but in most cases, these individuals have not worked as a group to identify and share best practices. As a consequence, there has been much duplication of effort. Through coordination, BIONIC is expected to improve efficiency, reduce redundancy, and have significant impact in several areas: 1) Researchers will benefit from an increased understanding of the Broader Impacts merit review criterion and increased access to collaborators who can help them design, implement, and evaluate their Broader Impacts activities; 2) Institutions and research centers will increase their capacity to support Broader Impacts via mentoring for Broader Impacts professionals and consulting on how to build Broader Impacts support infrastructure, with attention to inclusion of non-research-intensive universities, Historically Black Colleges and Universities, and Hispanic- and Minority-Serving Institutions that may not have the resources to support an institutional Broader Impacts office; and 3) NSF, itself, will benefit from a systematic and consistent approach to Broader Impacts that will lead to better fulfillment of the Broader Impacts criterion by researchers, better evaluation of Broader Impacts activities by reviewers and program officers, and a system for evaluating the effectiveness of Broader Impacts activities in the aggregate, as mandated by Congress and the National Science Board. Through its many planned activities, BIONIC will ultimately help advance the societal aims that the Broader Impacts merit review criterion was meant to achieve.
The main goals of the project will be accomplished through the four specific objectives: 1) Identify and curate promising models, practices, and evaluation methods for the Broader Impacts community; 2) Expand engagement in, and support the development of, high-quality Broader Impacts activities by educating current and future faculty and researchers on effective practices; 3) Develop the human resources necessary for sustained growth and increased diversity of the Broader Impacts community; and 4) Promote cross-institutional collaboration and dissemination for Broader Impacts programs, practices, models, materials, and resources. BIONIC will facilitate collaborative Broader Impacts work across institutions, help leverage previously developed resources, support professional development, and train new colleagues to enter into the Broader Impacts field. This project will improve the quality and sustainability of Broader Impacts investments, as researchers continue to create unique and effective activities that are curated and broadly disseminated. BIONIC will create a network designed to assist NSF-funded researchers at their institutions in achieving the goals of the Broader Impacts Review Criterion. In so doing, BIONIC will promote Broader Impacts activities locally, nationally, and internationally and help to advance the Broader Impacts field.
This award is co-funded by the Divisions of Molecular and Cellular Biosciences and Emerging Frontiers in the Directorate for Biological Sciences and by the Division of Chemistry in the Directorate for Mathematics and Physical Sciences.
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by bringing together youth (grades 2-5), their families, librarians, and professional engineers in an informal environment centered on engaging youth with age-appropriate, technology-rich STEM learning experiences fundamental to the engineering design process. The overarching aim is to better understand how youth's learning preferences or dispositions relate to their STEM learning experiences. It also seeks to build community members' capacity to inspire and educate youth about STEM careers. The project team includes the Space Science Institute's (SSI) National Center for Interactive Learning (NCIL), the University of Virginia (UVA) and the American Society of Civil Engineers (ASCE). This team builds on the scope and reach of a prior NSF-funded project called the STAR Library Education Network (STAR_Net). As an extension of this prior work, Project BUILD will collaborate with 6 public libraries (3 urban and 3 rural) and their local ASCE Branches. Two libraries have been selected to serve as pilots: High Plains Public Library in Colorado and the African-American Research Library and Cultural Center in Florida. All partner libraries will develop a plan for recruiting participants from groups currently underrepresented in STEM professions. Project BUILD's specific aims are to 1) Engage underserved audiences, 2) Build the capacity of participating librarians and ASCE volunteers, 3) Increase interest and engagement in STEM activities for youth in grades 2-5 and their families, and 4) Conduct a comprehensive education research project. Program components include the following: 1) Community Dialogue Events, 2) a Professional Development Program for partner librarians and ASCE volunteers, and 3) Development of a Technology-rich Programming Kit and Circulating STEM Kit program. Two research questions will be addressed: 1) What common factors might identify youth who engage in project activities and what factors might differentiate between youth who continue with program engagement and those who do not? and 2) What programmatic factors (i.e. design and composition of program activities, library recruitment, librarian engagement, professional engineer engagement, etc.) might influence youth's initial and continued engagement in project activities as well as youth's reported future career interests? An external evaluation will investigate the quality of the project's process as well as its impact and effectiveness. Benefits to the participating libraries' communities, library and engineering professionals, and the education community will be achieved through 1) Community Dialogue events; 2) Library and Librarian Outreach; 3) ASCE Outreach; and 4) Publication of Research and Evaluation results.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This exploratory Pilot study project brings together a diverse set of partners that include the Watertown Children's Theatre (WCT) which is west of Boston, and, from Boston College a team of science educators, learning science researchers, and positive youth development experts. The goal is to design and develop a project for middle school-aged youth. The pilot project, which integrates hands-on science learning experiences, experiments, and field trips with the student-led production of short plays, will engage youth in expressing their beliefs, passions, and their own identities about STEM by examining how the intersection of skills and practices used in both domains (science and theatre) can enable them to learn about science concepts, principles and methods as well as to develop science-focused identities. Middle-school youth will be engaged in a three-week summer program where they will be led by science teachers, playwrights, and high school students to conduct hands-on investigations in science in conjunction with developing original, ten-minute plays around a specific scientific theme relevant to their life experience, for example, the potential impact on their lives of heavy metals in water and poor air quality. After a science theme is chosen, the principal investigators will identify the big ideas that are important for youth to understand and be able to explain. Upon identification of the key science ideas, youth will then engage in pertinent science activities, visits to local sites, reading current news articles and then in identifying the local impacts and how the underlying science relates to those local impacts. The youth will perform their ten-minute plays at the end of the summer program. Following this showcase event, they will engage in additional science learning experiences and also revise their productions throughout the academic year in preparation for a youth science festival, where their creations will be performed by professional adult actors as a part of the Cambridge Science Festival taking place in the spring. The broader impact of the work focuses on broadening participation in STEM, specifically, the engagement of youth from under-represented populations in the sciences, such as African-Americans, Latinxs, and women with partner Boston Public Schools. The Pilot study will investigate the student learning and organizational dimensions of the model being developed.
The Boston College researchers will study youth's sense of purpose and identity toward science, particularly how youth's identity discrepancy changes through participation in the project. The work places youth voice at the center of the creation of STEM-based theatre plays. The theoretical foundation of the work is grounded in part in the concept of "path to purpose." The major research questions are: How do youth perceptions (interest, science anxiety, identity) toward science shift as they participate in the project? What is the residual impact on parents (family members) and youth on their discussions about science, and how does participation in the project impact those discussions? Research methods include surveys, interviews and observations. The external evaluation study will focus on understanding project implementation and progress toward meeting the project goals, in particular, how well the initiative works to establish a model for the informal STEM learning field that the team and others can apply beyond the Pilot study.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Meghan Hill
resourceresearchPark, Outdoor, and Garden Programs
Science in the Learning Gardens (henceforth, SciLG) program was designed to address two well-documented, inter-related educational problems: under-representation in science of students from racial and ethnic minority groups and inadequacies of curriculum and pedagogy to address their cultural and motivational needs. Funded by the National Science Foundation, SciLG is a partnership between Portland Public Schools and Portland State University. The sixth- through eighth-grade SciLG curriculum aligns with Next Generation Science Standards and uses school gardens as the milieu for learning. This
DATE:
TEAM MEMBERS:
Dilafruz WilliamsHeather Anne BruleSybil Schantz KelleyEllen A. Skinner
resourceresearchProfessional Development, Conferences, and Networks
In our efforts to sustain U.S. productivity and economic strength, underrepresented minorities (URM) (for the purpose of this paper defined as persons of African American, Hispanic American, and Native American racial/ethnic descent), provide an untapped reservoir of talent that could be used to fill technical jobs. Over the past 25 years, educational diversity programs have encouraged and supported URM pursuing STEM degrees. Yet, their representation in STEM still lags far behind that of White, non-Hispanic men.
To understand the reasons why this is occurring, the American Association for
DATE:
TEAM MEMBERS:
Yolanda S. GeorgeVirginia Van HorneShirley M. Malcom
In this article, we theorize the relation between race and schooling and consider the implications for learning. While the body of research on culture and learning has come to define learning as an inherently cultural and social process, scholars have few theoretical tools to help us think about the role of race and racism in relation to students' access to identities as learners and to learning. We draw on both theoretical and empirical literature to make three core arguments: (a) racial 'storylines' or narratives are prevalent in our society and have powerful implications for learners
DATE:
TEAM MEMBERS:
Na'ilah Suad NasirCyndy R. SnyderNiral Shah
In this article, we investigate how the national imperative to increase opportunities for young women of color in science, technology, engineering, and mathematics (STEM) and to broaden their participation was taken up locally at two high schools in one school district. Using ethnographic and longitudinal data, we focus on four young women of color (two at each school) as they negotiated STEM-related identities in the discursive and practice contexts of their lives at school. Using Holland and Lave’s concept of history in person, we view the young women as fighting for particular versions of a
Objective: Although upward transfer in science, technology, engineering, and mathematics (STEM) fields represents a prominent national policy concern, community college students’ aspirations for transfer in STEM are often impeded, resulting in lower transfer rates. This study investigated four aspects of community college STEM students’ aspirational experiences and behaviors with regard to transfer: support for transfer, transfer service usage, transfer-oriented interactions, and transfer information acquisition. Particular attention was paid to how these factors may impact students’
Slides from the January 30, 2018 Webinar present information for preparing proposals for the NSF INCLUDES Alliance Solicitation (NSF 18-529). Includes a brief description of NSF INCLUDES, an explanation of Collaborative Change strategies and the NSF INCLUDES 5 elements of collaborative change, proposal recommendations, details on the NSF cooperative agreements and the NSF Merit Review criteria, and provides useful resources.
DATE:
TEAM MEMBERS:
Jolene JessePaige Smith
resourceprojectProfessional Development, Conferences, and Networks
Project SYSTEMIC (A Systems Thinking Approach to STEM Ecosystem Development in Chicago) will apply systems thinking to a community-level STEM ecosystem development effort in one of Chicago's largest and most distressed neighborhoods. The project aims to broaden participation of African American and low-income Chicago Public School students (preK-12) in STEM learning opportunities. The proposed model of collaborative change for this project builds on the work of two coordinated collective impact initiatives--the Chicago STEM Pathways Cooperative and Austin Coming Together, a network of local organizations committed to improving educational and economic outcomes for the community. A key feature of this project is that it adds innovative, interactive, visual problem structuring and solving strategies to highlight and uncover the systemic interdependencies that contribute to the BP challenge for African American youth. The project will convene a series of workshops to engage community stakeholders in the mapping of the STEM ecosystem. A broad and representative cross-section of community stakeholders will design and develop evidence-based STEM ecosystem organizing and implementation strategies. Key outcomes anticipated from this project are the development of a shared understanding, agenda, activities, and commitment to collectively address the underlying challenges of STEM access and participation for African American youth. The goal of this community-driven project is to develop a viable system model that elevates neighborhood voices, historically excluded from the problem-solving table and decision-making processes, to leverage existing assets, build local capacity, increase messaging and awareness of the value of STEM, identify needed new programs, and develop coordination/resource sharing mechanisms across partners to support implementation. The evaluation of this project will be grounded in systems thinking and culturally-responsive approaches that seek to understand the diverse perspectives of stakeholders while measuring progress toward project goals. Evaluation data will be used to assess the problem structuring process, to evaluate the organizational strategy designed to address the structured problem, and to support adaptive learning among stakeholders.