Skip to main content

Community Repository Search Results

resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. Programming includes Neighborhood Walks led by teams of scientists/engineers and artists Community Workshops, Local Artist Projects, and Youth Mentorship focused on neighborhood and citywide water issues Intergenerational participation, from seniors and adult learners to young adults, teens, and middle schoolers
DATE:
resource evaluation Public Programs
The Space Science Institute’s (SSI) National Center for Interactive Learning (NCIL), in partnership with the American Society for Civil Engineers (ASCE) and the University of Virginia (UVA), was awarded a grant from the National Science Foundation (NSF) to develop and implement a 3-year program, Project BUILD (Building Using an Interactive Learning Design). Project BUILD aims to bring together public library staff from six libraries (three rural and three urban) and professional engineers from ASCE to engage youth in grades 2-5 and their families in age-appropriate, technology-rich
DATE:
resource project Public Programs
A frequently missing element in environmental education programs is a concerted effort by communities, organizations, government, and academic stakeholders to build meaningful partnerships and cultivate informal science learning opportunities via public participation in environmental research. This collaborative approach not only makes scientific information more readily available, it also engages community members in the processes of scientific inquiry, synthesis, data interpretation, and the translation of results into action. This project will build a co-created citizen science program coupled with a peer education model and an extensive communication of results to increase environmental STEM literacy. The project targets historically underrepresented populations that are likely to be disproportionately impacted by climate, water scarcity, and food security. Based upon past needs assessments in the targeted communities, gardens irrigated by harvested rainwater will become hubs for environmental STEM education and research. For this project, gardens irrigated by harvested rainwater will serve as hubs for environmental literacy education efforts. Researchers from the University of Arizona and Sonora Environmental Research Institute will work alongside community environmental health workers, who will then train families residing in environmentally compromised areas (urban and rural) on how to monitor their soil, plant, and harvested water quality. The project aims to: (1) co-produce environmental monitoring, exposure, and risk data in a form that will be directly relevant to the participants' lives, (2) increase the community's involvement in environmental decision-making, and (3) improve environmental STEM literacy and learning in underserved rural and urban communities. The project will investigate and gather extensive quantitative and quantitative data to understand how: (1) participation in a co-created citizen science project enhances a participant's overall environmental STEM literacy; (2) a peer-education model coupled with a co-created citizen science program affects participation of historically underrepresented groups in citizen science; and (3) the environmental monitoring approach influences the participant's environmental health learning outcomes and understanding of the scientific method. In parallel, this project will evaluate the role of local-based knowledge mediators and different mechanisms to communicate results. These findings will advance the fields of informal science education, environmental science, and risk communication. Concomitantly, the project will facilitate the co-generation of a robust dataset that will not only inform guidelines and recommendations for harvested rainwater use, it will build capacity in underserved communities and inform the safe and sustainable production of food sources. This research effort is especially critical for populations in arid and semiarid environments, which account for ~40% of the global land area and are inhabited by one-third of the world's population. This program will be available in English and Spanish and can truly democratize environmental STEM research and policy. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Monica Ramirez-Andreotta Aminata Kilungo Leif Abrell Jean McLain Robert Root
resource project Media and Technology
Mission to Mars engages 6th-8th grade students in the science, engineering and careers related to Mars exploration. The program is led by the Museum of Science and Industry, Chicago, and includes as partners Challenger Learning Centers in Woodstock, IL, Normal IL and three NASA Centers (Jet Propulsion Laboratory, Marshall Space Flight Center, and Johnson Space Center). The project aims to:

Link, via videoconference, urban and rural middle school students from low income communities in an exploration of space science
Develop and launch programs that showcase NASA Center research
Enrich middle school curricula and promote learning about NASA’s space missions with experiences that inspire youth to pursue in NASA-related STEM careers.
Programs and products produced include:

3 videoconference program scenarios that highlight research being conducted at NASA Centers
Pre- and post-event curriculum materials designed for middle school classrooms
Teacher professional development workshops
Communication support for NASA professionals
iPad apps utilized during the program
Since the program launched five years ago, Mission to Mars has served 7,676 students. MSI seeks to provide opportunities for all learners, and works to remove barriers to participation in high-quality science learning experiences. Mission to Mars allows MSI to engage more Chicago Public Schools (where 86% of students are economically disadvantaged) in real and relevant science experiences that may lead to STEM careers.

As MSI’s CP4SMP grant comes to an end, the Museum has committed to continued delivery of the program through 2 Mission to Mars Learning Labs, offered to 6-8th grade school groups visiting on field trips. Live videoconferencing with JPL and Johnson will occur during roughly half of the sessions. Our Challenger Learning Center partners will integrate Mission to Mars activities, materials and iPad apps into their own Mars-themed programs. Together these efforts extend the transformative hands-on science experiences developed under the Mission to Mars grant to a whole new audience of middle school students and teachers.
DATE: -
TEAM MEMBERS: David Mosena
resource project Public Programs
Michigan Technological University will collaborate with David Heil and Associates to implement the Family Engineering Program, working in conjunction with student chapters of engineering societies such as the American Society for Engineering Education (ASEE), the Society of Hispanic Professionals (SHP) and a host of youth and community organizations. The Family Engineering Program is designed to increase technological literacy by introducing children ages 5-12 and their parents/caregivers to the field of engineering using the principles of design. The project will reach socio-economically diverse audiences in the upper peninsula of Michigan including Native American, Hispanic, Asian, and African American families. The secondary audience includes university STEM majors, informal science educators, and STEM professionals that are trained to deliver the program to families. A well-researched five step engineering design process utilized in the school-based Engineering is Elementary curriculum will be incorporated into mini design challenges and activities based in a variety of fields such as agricultural, chemical, environmental, and biomedical engineering. Deliverables include the Family Engineering event model, Family Engineering Activity Guide, Family Engineering Nights, project website, and facilitator training workshops. The activity guide will be pilot tested, field tested, and disseminated for use in urban, suburban, and rural settings. Strategic impact will result from the development of content-rich engineering activities for families and the dissemination of a project model that incorporates the expertise of engineering and educational professionals at multiple levels of implementation. It is anticipated that 300 facilitators and 7,000-10,000 parents and children will be directly impacted by this effort, while facilitator training may result in more than 27,000 program participants.
DATE: -
TEAM MEMBERS: Neil Hutzler Eric Iversen Christine Cunningham Joan Chadde David Heil