Explora Science Center and Children's Museum of Albuquerque will conduct “Roots: supporting Black scholars in STEAM,” a project to increase Explora’s relationships with and relevance to Albuquerque’s Black communities and increase opportunities for Black students in Albuquerque to pursue STEAM. The project is designed to foster a holistic, place-based approach to K–16 STEAM learning that incorporates a growth mindset and highlights the contributions of community members, particularly Black STEAM professionals. The museum will collaborate on project activities with the Mexico Black Leadership Council, the Greater Albuquerque Housing Partnership/Casa Feliz, the Community School at Emerson Elementary, and Sandia National Laboratories’ Black Leadership Committee.
The Saginaw Chippewa Indian Tribe of Michigan's Ziibiwing Center of Anishinabe Culture and Lifeways will organize a four-day educational symposium to build a better understanding of Native American culture and history. The project will begin with a forum to foster dialogue on the 200th anniversary of the Treaty of Saginaw. The forum will discuss the treaty's impact on sovereignty and relationships between natives and non-natives and the loss of continuity of language, culture, and the practice of traditional art forms. The forum will include representatives from the 25 tribes whose children attended the Mount Pleasant Indian Industrial Boarding School. The representatives will share cultural stories and traditional methods through birch bark, black ash, elm and sweet grass basket making. The symposium will conclude on Michigan Indian Day with science, technology, engineering, art and math (STEAM) activities for area students.
In Research + Practice Partnerships with 4 makerspaces in 2 cities, we pursue equity-oriented STEM-rich making with youth from historically underrepresented backgrounds, particularly BIPOC youth and youth in refugee & low-income communities, towards developing:
a theory-based and data-driven framework for equitably consequential making
a set of individual-level and program-level cases with exemplars of equitably consequential making (and the associated challenges) that can be used by researchers and practitioners for guiding the field
an initial set of guiding principles (with
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.
Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.
This poster was presented at the 2021 NSF AISL Awardee Meeting. Youth Radio (YR) Media is a national network of journalists, designers, developers and artists ages 14-24 who create media and technology that address key social issues — including, since 2019, A.I. through an ethics and equity lens. Participants are primarily youth of color and those contending with economic and other barriers to full participation in STEM.
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.
These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.
WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.
The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.
Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?
The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?
This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
The call for more science, technology, engineering, and mathematics (STEM) education taking place in informal settings has the potential to shape future generations, drive new innovations and expand opportunities. Yet, its power remains to be fully realized in many communities of color. However, research has shown that using creative embodied activities to explore science phenomena is a promising approach to supporting understanding and engagement, particularly for youth who have experienced marginalization. Prior pilot work by the principal investigator found that authentic inquiries into science through embodied learning approaches can provide rich opportunities for sense-making through kinesthetic experience, embodied imagining, and the representation of physics concepts for Black and Latinx teens when learning approaches focused on dance and dance-making. This Research in Service to Practice project builds on prior work to better understand the unique opportunities for learning, engagement, and identity development for these youth when physics is explored in the context of the Embodied Physics Learning Lab Model. The model is conceptualized as a set of components that (1) allow youth to experience and utilize their intersectional identities; (2) impact engagement with physics ideas, concepts and phenomena; and (3) lead to the development of physics knowledge and other skills. The project aims to contribute to more expansive definitions of physics and physics learning in informal spaces. While the study focuses primarily on Black and Latinx youth, the methods and discoveries have the potential to impact the teaching of physics for a much broader audience including middle- and high-school children, adults who may have been turned off to physics at an earlier age, and undergraduate physical science majors who are struggling with difficult concepts. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
The research is grounded in sociocultural perspectives on learning and identity, embodied interaction and enactive cognition, and responsive design. The design is also informed by the notion of “ArtScience” which highlights commonalities between the thinking and making practices used by artists and by scientists and builds on the theoretical philosophy that all things can be understood through art or through science but integrating the two lenses allows for more complete understandings. Research will investigate the relationship between embodied learning approaches, design principles, and structures of the Embodied Physics Learning Lab model using the lenses of physics, dance, and integrated ArtScience to better understand the model. The project employs design-based research to address two overarching research questions: (1) What unique opportunities for learning, engagement, and identity development for Black and Latinx youth occur when physics is explored in the context of the Embodied Physics Learning Lab Model? and (2) How do variations in site demographics and site implementation influence the impact and scalability of the Learning Lab model? Further, the inquiry will consider (a) how youth experience and utilize their intersectional various identities in the context of the activities, structures, and essential elements of the embodied physics learning lab; (b) how youth's level of physics engagement changes depending on which embodied learning approaches and essential element structures are used; (c) the physics knowledge and other skills youth attain through the set of activities; and (d) how, if at all, the embodied learning approaches engage youth in thinking about their own agency as STEM doers. An interdisciplinary team of researchers, choreographers, and youth along with community organizations will co-design and implement project activities across four sites. Approximately 200 high school youth will be engaged; 24 will have the role of Teen Thought Partner. Through three iterative design cycles of implementation, the project will refine the model to investigate which elements most affect successful implementation and to identify the conditions necessary for scale-up. Data will be collected in the form of video, field notes, pre- and post- interviews, pre- and post- surveys, and artifacts created by the youth. Analyses will include a combination of interaction analysis, descriptive data analysis, and movement analysis. In addition to the research findings and explication of the affordances and constraints of the model, the project will also create a curricular resource, including narrative text and video demonstrations of physics concepts led by the teen thought partners, video case training modules, and assessment tools.
DATE:
-
TEAM MEMBERS:
Folashade Cromwell SolomonDionne Champion
For many youth, gaining access to quality STEM (science, technology, engineering mathematics) experiences is a challenge. Inequity and underrepresentation of youth of color in STEM persist. The makerspace movement holds great promise in broadening participation in STEM among youth from underrepresented communities. Makerspaces are defined as collaborative workspaces inside a library, school, or other community location designed for creating, learning, exploring, and sharing with high- to low-tech tools. Despite the availability of making programs focused on STEM activities targeted towards youth of color, the field has few models for designing these programs in ways that build upon youths’ cultural assets and desires for making. Working collaboratively with youth, families, and maker educators in Lansing, Michigan, and Greensboro, North Carolina, this project aims to deepen the field’s understanding about the rich and deep ingenuity in STEM-based making that youth from underrepresented communities can engage. These insights will be leveraged towards advancing community-based maker programming across four community-based makerspaces. The project will also build capacity among STEM-oriented maker educators, researchers, and youth. This model is important because the voices and perspectives of families and communities have been largely absent from the formative knowledge and theory-building processes of the field of makerspace education.
This project will build new knowledge about how and why youth and families make at home, in communities, and in STEM-based maker programs. Collaborators for the project include the University of Michigan, the University of North Carolina at Greensboro, and four STEM- and youth-oriented making spaces in Lansing, Michigan, and Greensboro, North Carolina. This project will take place in two phases, exploring two main research questions: 1) What are the learning results of making at home and in the community? And 2) How do youth organize community resources for sustained STEM making, and what facilitates or hinders such organization? Phase one investigates the community resources (people, tools, materials, knowledge, data, and spaces) youth leverage towards making and how they do so across time. The project will study how youth connect these resources to STEM-rich making and what youth and families learn in the process. In phase two, design-based research will be used to apply phase one insights to the design of community-based STEM-rich maker programs in four maker clubs in Michigan and North Carolina. This work will develop an understanding of youths’ family and community-based STEM-based making practices, including the community resources (people, tools, materials, knowledge, data, and spaces) that youth leverage.
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
Described by Wohlwend, Peppler, Keune and Thompson (2017) as “a range of activities that blend design and technology, including textile crafts, robotics, electronics, digital fabrication, mechanical repair or creation, tinkering with everyday appliances, digital storytelling, arts and crafts—in short, fabricating with new technologies to create almost anything” (p. 445), making can open new possibilities for applied, interdisciplinary learning in science, technology, engineering and mathematics (Martin, 2015), in ways that decenter and democratize access to ideas, and promote the construction
DATE:
TEAM MEMBERS:
Jill CastekMichelle Schira HagermanRebecca Woodland
Computing and computational thinking are integral to the practice of modern science, technology, engineering, and math (STEM); therefore, computational skills are essential for students' preparation to participate in computationally intensive STEM fields and the emerging workforce. In the U.S., Latinx and Spanish speaking students are underrepresented in computing and STEM fields, therefore, expanding opportunities for students to learn computing is an urgent need. The Georgia Institute of Technology and the University of Puerto Rico will collaborate on research and development that will provide Latinx and Spanish speaking students in the continental U.S. and Puerto Rico, opportunities to learn computer science and its application in solving problems in STEM fields. The project will use a creative approach to teaching computer science by engaging Latinx and Spanish speaking students in learning how to code and reprogram in a music platform, EarSketch. The culturally relevant educational practices of the curriculum, as a model for informal STEM learning, will enable students to code and reprogram music, including sounds relevant to their own cultures, community narratives, and cultural storytelling. Research results will inform education programs seeking to design culturally authentic activities for diverse populations as a means to broaden participation in integrated STEM and Computing. This Broad Implementation project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, including multiple pathways for broadening access to and engagement in STEM learning, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
As part of the technical innovation of the project, the EarSketch platform will be redesigned for cultural and linguistic authenticity that will include incorporating traditional and contemporary Latin sound beats and musical samples into the software so that students can remix music and learn coding using sounds relevant to their cultures; and developing a Spanish version of the platform, with a toggle to easily switch between English and Spanish. Investigators will also develop an informal STEM curriculum using best practices from Culturally Relevant Education and Cultural Sustaining Pedagogy that provides authentic, culturally and linguistically rich opportunities for student engagement by establishing direct and constant connections to their cultures, communities and lived experiences. The curriculum design and implementation team will work collaboratively with members of Latinx diverse cultural groups to ensure semantic and content equivalency across diverse students and sites. Validating the intervention across students and sites is one of the goals of the project. The model curriculum for informal learning will be implemented as a semester long afterschool program in six schools per year in Atlanta and Puerto Rico, and as a one-week summer camp twice in the summer. The curricular materials will be broadly disseminated, and training will be provided to informal learning practitioners as part of the project. The research will explore differences in musical and computational engagement; the interconnection between music and the computational aspects of EarSketch; and the degree to which the program promotes cultural engagement among culturally and linguistically heterogenous groups of Latinx students in Atlanta, and more culturally and linguistically homogenous Latinx students in Puerto Rico. Investigators will use a mixed method design to collect data from surveys, interviews, focus groups, and computational/musical artifacts created by students. The study will employ multiple case study methodology to analyze and compare the implementation of the critical components of the program in Puerto Rico and Atlanta, and to explore differences in students' musical and computational thinking practices in the two regions. Results from the research will determine the impact of the curriculum on computer science skills and associated computational practices; and contribute to the understanding of the role of cultural engagement on educational outcomes such as sense of belonging, persistence, computational thinking, programming content knowledge and computer science identity. Results will inform education programs designing culturally authentic and engaging programming for diverse populations of Latinx youths.
DATE:
-
TEAM MEMBERS:
Diley HernandezJason FreemanDouglas EdwardsRafael Arce-NazarioJoseph Carroll-Miranda
This project will focus on addressing the challenges faced by rural youth with a particular emphasis on those youth who are English Language Learners. The project will provide informal education via libraries and librarians which can provide unique opportunities for rural youth and communities. Building on several years of research and experimentation, this project will augment the formal education sector, as well. The settings for the project are 12 rural school districts in largely Latinx communities. The project partners are the Space Science Institute, the American Library Association (ALA), the Institute for Learning Innovation and the Twin Cities Public Television. Expertise from the Latinx community will play a significant part in the project. The project will engage learners from diverse backgrounds, ages, and interests in science through a coordinated and tested strategy incorporating three Learning Pathways (i.e., Science Learning Spaces, Programs, and Science Kits) in a public library environment. The results should yield a model for Nationwide application.
The main goals are: 1) to establish learning pathways to engage rural communities through exhibit host libraries and (2) to increase art-rich STEM learning opportunities for rural communities through libraries and their support systems. Building on an established training model, the project will introduce library staff to the STEAM content of the exhibits and guide them in developing their own STEAM Learning Pathways. SciGirls digital media, hands-on activities, family resources, and a training network will expand the depth and reach of the project. The project draws on existing professional infrastructure to increase library staff capacity through ALA and the Institute's established community of practice. The researchers will study the efficacy of each pathway, alone and in tandem, on participant's interest development and persistence. The research will use a mixed-methods design-based approach that involves questionnaires, interviews and case studies.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.