This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
Chemistry is an important and widely relevant field of science. However, when compared with other STEM content areas, chemistry is under-represented in U.S. science museums and other informal educational environments. This project will build, and build knowledge about, innovative approaches to delivering informal science learning activities in chemistry. The project will not only increase public interest and understanding of chemistry but also increase public perception of chemistry's relevance and increase the public's self-efficacy with respect to chemistry. This project outcomes will include a guide for practitioners along with activity materials that will be packaged into a kit, distributed, and replicated for use by informal science educators, chemists, and chemistry students at 250 sites across the U.S. The project team will reach out to organizations that serve diverse audiences and diverse geographic locations, including organizations in rural and inner-city areas. The kits will provide guidance on engaging girls, people with various abilities, Spanish speakers, and other diverse audiences, and include materials in Spanish. Written guides, training videos, and training slides will be included to support training in science communication in general, as well as chemistry in particular. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.
This project will take an innovative approach to develop informal educational activities and materials about chemistry. Rather than starting with content goals, the project will start with a theoretical framework drawn from research about affecting attitudes about science related to interest, relevance, and self-efficacy. A design-based research approach (DBR) will be used to apply that framework to the development of hands-on educational activities about chemistry, while also testing and modifying the framework itself. (DBR blends empirical educational research with the theory-driven design of learning environments.) Existing or new educational activities that appear to embody key characteristics defined in the framework will be tested with public audiences for their impact on visitors. Researchers and educators will determine how different characteristics of the educational activities defined in the framework affect the outcomes. The activities will be modified and tested iteratively until the investigators achieve close alignment between framework and impacts.. The project team will continue the design-based research approach both to examine groups of activities in which synergies can have impacts beyond single interactions as well as to examine varied ways of training facilitators who can also significantly affect outcomes. In this way, the project will generate knowledge about how kits of hands-on informal learning activities can stimulate attitudes of interest, relevance, and self-efficacy with respect to the neglected field of chemistry. The project teams will broadly disseminate project outcomes within the educational research, science and informal Science, Technology, Engineering and Mathematics (STEM) education communities. While this project will focus on chemistry, the strategies it will develop and test through a design-based research process will provide valuable insight into effective approaches for informal STEM education more broadly.
Imagine two seventh-grade students from communities of color and low socioeconomic backgrounds, of whom at least one is an English-language learner1 (ELL). Both are likely disenfranchised from avenues to success and the ability to see themselves as capable of great things. These students attend school in the largest school districts in Colorado. As part of their seventh-grade science class, they participate in a program called Urban Advantage Metro Denver (UA Denver), which provides them the opportunity to work on a self-selected science project. Their projects are inspired by field trips to
ResearchLink: Spotlight on Solar Technologies was a Collaborative Research Connecting Researchers and Public Audiences (CRPA) Project led by the Oregon Museum of Science and Industry and Portland State University, funded by the NSF AISL program from 2012-2014. This poster was presented at the 2014 AISL PI Meeting in Washington, DC.
DATE:
TEAM MEMBERS:
Portland State University and Oregon Museum of Science and IndustryLauren (Russell) MorenoCarl Wamser
This CRPA award will address the science behind solar energy, its capture, measurements, and uses. It is a collaborative effort between scientists at Portland State University (PSU) and the Oregon Museum of Science and Industry (OMSI). Materials for the OMSI staff will be prepared by the scientists and the OMSI staff will work with the scientists on making presentations to the public. OMSI will translate information from the exhibits, displays, and presentations into Spanish to engage the Hispanic population. Scientific café?s will be part of this engagement. The PI and OMSI museum have had a working relationship for some time adding to the potential success of the project. The PI and his colleagues at PSU have a major effort going in research on photonic science suggesting that this engagement can continue to be updated as the time goes on. The project will be evaluated by the well established evaluation group at OMSI. Further, Spanish speaking public will be embraced with this material as will rural residents from traveling exhibits and displays.
A Fulldome Planetarium Show for Space Science: A Pilot Project was designed to immerse and engage middle school students (grades 5-8) in space exploration, comparative planetology and the importance of sustainability on our own planet. Morehead Planetarium and Science Center at the University of North Carolina at Chapel Hill led the project, which involved the development of a 27 minute fulldome digital planetarium show and supporting curricula. The project included advisors from NASA JPL, UNC’s Physics and Astronomy Department and the Wake County North Carolina Public School System. The show draws on discoveries by the Mars Exploration Rovers, Hubble Space Telescope and other NASA missions to compare and contrast geological, atmospheric, and other physical characteristics of the places visited by the show's main characters. The aims of the show are to provide an engaging learning experience that helps students understand the criteria used to classify Solar System bodies and appreciate the environmental conditions needed to support life as we know it. Further, the show aims to communicate why Earth - with a balance of systems and resources found nowhere else - is an "amazing oasis" in our Solar System. The Standards-Based Learning Activities for Middle School support and extend the content of the Solar System Odyssey show by providing clear, detailed ideas for pre- and post- visit lessons. The lessons center on Teaching about Technology Design, Integrating Science and Language Arts, Teaching about Environmental Systems and include science experiments, creative writing and vocabulary exercises, discussion and engineering design challenges. The lessons reference specific NASA missions, and some of the activities are modeled directly after previously produced NASA educational materials. The show and curricular materials have been translated and are available in Spanish.
Through "Addressing the Science of Really Gross Things: Engaging Young Learners in Biomedical Science Through a Fulldome Planetarium Show and Supporting Curricula," Morehead Planetarium and Science Center at the University of North Carolina at Chapel Hill, in close collaboration with NIH-funded researchers at the UNC and a leading children's book author, will develop an informal science education media project and a suite of hands-on, inquiry-based curricula based on the media project for use in science centers, museums and schools. This project will build the pipeline of future researchers and create awareness of NIH-funded research by generating interest and excitement among children age 9-13 in the health sciences and related careers and building their science content knowledge. To achieve the objective, the investigators will develop a fulldome planetarium show; create correlating curricula for summer camps, afterschool programs, scout programs, science center field trips, science clubs and schools; and produce a DVD highlighting careers in the health sciences. In addition, the project will use several methods to target populations traditionally underrepresented in the biomedical fields, including featuring professionals from underrepresented populations in the multimedia and curricula products, making outreach visits to counties with large populations traditionally underrepresented in health science research careers, and producing a Spanish-language version of the products. The use of a known brand, "Grossology," is an innovative way to connect to children in the target age range and to encourage the informal science education community to embrace health-science content in their fulldome theaters. In addition, the project's hub-and-spoke approach further encourages adoption of this programming by providing informal science venues with both an engaging experience (hub) and the supporting curricula (the spokes) that is necessary to extend the show's potential for having significant educational impact. A strong project team maximizes the project's likelihood for success. The team includes fulldome producers and educators from Morehead and NIH-funded researchers with expertise in appropriate science content areas. In addition, the investigators have created a network of consultants, advisory board members and evaluators that will create feedback loops designed to ensure high-quality, scientifically-accurate, educationally-effective products. The investigators will use a combination of free and revenue-based dissemination strategies to ensure that the products of this award are broadly distributed. These strategies hold significant promise for creating broad use of this project's products in the nation's science centers, museums and classrooms.
The Miami Museum of Science, in collaboration with University of Miami's (UM) School of Medicine, is requesting a Phase II grant to support national replication of the Biomedical Training, Research and College Prep (BioTrac) Project. The goal of Phase I, now in its final year of funding, was to develop a replicable model aimed at increasing the numbers of underserved students entering the biomedical research pipeline. Phase I focused on priority areas under Healthy People 2000 reflecting health issues of interest to the community as well as resources available through UM's Jackson Memorial Medical Center. Comprising hands-on project-based programming, career awareness activities, college prep, research internships and college residential experiences, the project has served 98 students to date, of whom 88% are low-income and 96% reside in homes where English is the second language. Of the 43 seniors who have graduated to date, 42 are enrolled in post-secondary studies. Of these, 52% have chosen a science-related major, and of these, 73% have chosen a biomedical course of study. Under the proposed Phase II project, the useum will establish BioTrac as a national demonstration site, extending BioTrac strategies and materials to formal and informal science institutions (ISis) through site-based institutes, distance-learning opportunities and professional conferences and publications. Continued delivery of BioTrac programming at the demonstration site will also further increase the number of underrepresented students entering the biomedical research pipeline, and allow for further programming aimed at increasing public understanding of Healthy People 2010 priorities and biomedical research. The museum will target ISis with youth programs to attend a three-day replication institute, reaching a minimum of 30 ISis during the grant. Through participation in national conferences and professional development sponsored by the Association of Science-Technology Centers, representng 340 ISis, the model has the capacity to impact small, medium, and large science centers nationwide. The model will also be adaptable for use by the other 123 Upward Bound Math & Science Centers engaged in science enrichment programming for underserved youth. Finally, elements of the model will be suitable for extracurricular school-based science clubs and high school magnet programs focused on biomedicine, further extending the potential impact of the model to school districts nationwide.