The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.
The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.
The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE:
-
TEAM MEMBERS:
Maritza MacdonaldMeryle WeinsteinRosamond KinzlerMordecai-Mark Mac LowEdmond MathezDavid Silvernail
Science On a Sphere (SOS) at Fiske Planetarium will raise awareness and understanding of Earth system science for over 30,000 visitors per year, using student docents and newly-developed, tested pedagogy. SOS will enhance Fiske's ability to engage 3,000 university students and 30,000 K-12 students and members of the public. A student docent program will transform the traditionally passive experience of a planetarium visit into an interactive learning opportunity. The docents will be drawn from two sources: undergraduates who will be future science teachers, who we take from a selective CU program called "STEM-TP", and Hispanic university and high school students taught by Fiske's planetarium manager Francisco Salas. Docents will talk with visitors and help them understand key science issues that affect the earth, leading to more informed decision-making. Fiske will develop bilingual pedagogical material and new data sets, and share them with NOAA and SOS sites. To support the docents, and visiting students and teachers, Fiske Education Manager Traub-Metlay will lead development of explanatory materials that challenge visitors and provide context for what they are seeing. These will be translated into Spanish by Fiske Manager Salas. New data sets, contributed by faculty members, will expand the range of SOS, into space, adding solar interior models, the celestial sphere, and the cosmic background radiation from the Big Bang, along with new terrestrial data such as the worldwide distribution of forest fires. SOS will become a focal point in Fiske's longstanding tradition of teacher workshops, which are often done in cooperation with the University of Colorado and NOAA scientists and highlight NOAA s role monitoring the earth and sun. It also will be integrated with a small suite of hands-on exhibits we are installing that explain how observations can be made in infrared, ultraviolet, and X-rays in addition to visible light. These would complement SOS, which features multi-wavelength data. Fiske and its Boulder Colorado-area partners have raised $75,000 to cover the full cost of SOS hardware, and have formal institutional commitments to long-term program development. This award from NOAA will go into materials development, evaluation, and student pay. Colorado communities are aware of NOAA s important work and the nearby David SkaggsCenter , but security measures make it difficult to visit there. Fiske is much more accessible. Fiske will improve the usefulness of all SOS sites by conducting formative evaluation to assess what kinds of SOS presentations work best with public and school audiences, giving feedback to NOAA and all SOS users.
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.