Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian Zahra Hazari Philip Sadler Gerhard Sonnert
resource project Public Programs
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:


develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.


This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.

A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.

The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
DATE: -
TEAM MEMBERS: Adam Marcus Theresa Gillespie
resource research Media and Technology
Informal STEM education institutions seek to engage broader cross sections of their communities to address inequities in STEM participation and remain relevant in a multicultural society. In this chapter, we advance the role that evaluation can play in helping the field adopt more inclusive practices and achieve greater equity than at present through evaluation that addresses sociopolitical contexts and reflects the perspectives and values of non-dominant communities. To do this for specific projects, we argue that evaluation should privilege the voices and lived experiences of non-dominant
DATE:
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This Research in Service to Practice project will examine how a wide range of pre-college out-of-school-time activities facilitate or hinder females' participation in STEM fields in terms of interest, identity, and career choices. The study will address the ongoing problem that, despite females' persistence to degree once declaring a major in college, initially fewer females than males choose a STEM career path. To uncover what these factors might be, this study will look at the extent to which college freshmen's pre-college involvement in informal activities (e.g., science clubs, internships, shadowing of STEM professionals, museum-going, engineering competitions, citizen science pursuits, summer camps, and hobbies) is associated with their career aspirations and avocational STEM interests and pursuits. While deep-seated factors, originating in culture and gender socialization, sometimes lower females' interest in STEM throughout schooling, this study will examine the degree to which out-of-school-time involvement ameliorates the subtle messages females encounter about women and science that can interfere with their aspiration to a STEM careers.

The Social Cognitive Career Theory will serve as the theoretical framework to connect the development of interest in STEM with students' later career choices. An epidemiological approach will be used to test a wide range of hypotheses garnered from a review of relevant literature, face-to-face or telephone interviews with stakeholders, and retrospective online surveys of students. These hypotheses, as well as questions about the students' demographic background and in-school experiences, will be incorporated into the main empirical instrument, which will be a comprehensive paper-and-pencil survey to be administered in classes, such as English Composition, that are compulsory for both students with STEM interests and those without by 6500 students entering 40 large and small institutions of higher learning. Data analysis will proceed from descriptive statistics, such as contingency tables and correlation matrices, to multiple regression and hierarchical modeling that will link out-of-school-time experiences to STEM interest, identity, and career aspirations. Factor analysis will be used to combine individual out-of-school activities into indices. Propensity score weighting will be used to estimate causal effects in cases where out-of-school-time activities may be confounded with other factors. The expected products will be scholarly publications and presentations. Results will be disseminated to out-of-school-time providers and stakeholders, educators, and educational researchers through appropriate-level journals and national meetings and conferences. In addition, the Public Affairs and Information Office of the Harvard-Smithsonian Center for Astrophysics will assist with communicating results through mainstream media. Press releases will be available through academic outlets and Op-Ed pieces for newspapers. The expected outcome will be research-based evidence about which types of out-of-school STEM experiences may be effective in increasing young females' STEM interests. This information will be crucial to educators, service providers, as well as policy makers who work toward broadening the participation of females in STEM.
DATE: -
TEAM MEMBERS: Roy Gould Philip Sadler Gerhard Sonnert
resource project Media and Technology
SciGirls and Citizen Science: Real Data, Real Kids, Real Discoveries SciGirls is showcasing Citizen Science! From their own backyards to a NASA research center, the bright, relatable, real girls featured on the groundbreaking PBS series are seriously into science, technology, engineering and math, or STEM. And Season Three of SciGirls finds these STEM adventurers tracking toads, counting clouds and much more, all in the name of citizen science. The brand-new season of the Emmy-winning show, featuring six stand-out episodes, debuted April 2015 on PBS KIDS (check local listings) and online at http://pbskids.org/scigirls. Citizen science is the newest STEM frontier that engages the general public –and kids – in real science. Scientists worldwide invite ordinary people—like the SciGirls—to observe and record data about everything from birds to beaches, monarch butterflies to maple trees. The data is then shared with scientists, who use it to generate new scientific knowledge. In six exciting new episodes, middle school girls and their female STEM professional mentors hit the great outdoors, cataloging frog calls, tracking the changing seasons, verifying satellite imagery of clouds, monitoring fragile butterfly populations, improving urban bird habitats, and advocating for healthy oceans. In addition, animated characters Izzie and Jake are back and finding themselves in sticky situations that can only be solved by STEM—and the SciGirls. When the SciGirls share their data with professional scientists, they save the day for Izzie and Jake and help save the environment! The new mobile-friendly website at http://pbskids.org/scigirls lets kids play new games, watch episodes and videos, and connect with fellow STEM explorers anywhere, anytime. “Collaboration is the key to successful citizen science,” said SciGirls executive producer Richard Hudson. “Since SciGirls’ beginning, working together—making discoveries, mistakes and friends—is one of the important research-based methods we use to engage girls around STEM. This new season underscores the importance of collaboration within the scientific research community and workforce. SciGirls is fortunate to have powerful partners advising us about citizen science, including the Cornell Lab of Ornithology, NASA and SciStarter.” The SciGirls creative team is headed by Twin Cities Public Television’s Director of Science Content Richard Hudson, Executive Producer of the long-running PBS children’s science series Newton's Apple and creator of DragonflyTV and the SciGirls initiative. Animation is created by Soup2Nuts, producers of PBS’ WordGirl. Strategic partners for the new series are the Cornell Lab of Ornithology, Rick Bonney co-PI, and the National Girls Collaborative Project, co-PI Karen Peterson. SciGirls is made possible by a major grant from the National Science Foundation. Additional funding is provided by INFOR, Northrop Grumman Foundation, and PPG Industries Foundation.
DATE: -
resource project Public Programs
This project will be conducted by a team of investigators from North Carolina State University. The principal investigator proposes to examine the characteristics, motivations, in and out-of-school experiences, informal science activities, and career trajectories of 1000 science hobbyists and "master hobbyists." Master hobbyists are individuals who have developed science expertise and spend considerable free time engaging in science as a leisure activity. Master science hobbyists are found across most areas of science (e.g. birdwatchers, amateur astronomers). This research will determine who these individuals are, their career pathways, how they engage in science activities and what motivates, sustains, and defines their science interests. One of the particular goals of this research is to develop new understandings of how science hobby interests develop for women and underserved minorities. In the proposed research investigators will use the results of interviews and surveys to identify contextual factors that influence the motivational processes that, in turn, influenced choices of careers and contribute to ongoing choices in hobby and citizen science activities. Of interest in this study is how citizen scientists who are also serious hobbyists differ from master science hobbyists. Research on citizen scientists has shown that this group is highly motivated by collective motives (such as a desire to help others and further science), whereas this may not be the case with the master science hobbyist. Two groups will be sampled: a) birdwatchers and b) amateur astronomers. This sampling model will allow investigators to contrast their findings by: 1) those who have selected a science career versus those that did not select a science career, 2) those who participate in citizen science activities and those that do not, and 3) those who are birdwatchers (greater mathematical components) and those who are amateur astronomers (lesser mathematical components). Additional coding and analyses will examine any differences in the evolution of bird watching and astronomy hobbies. The results of this research will be examined in light of existing motivational and sociocultural models of career selection. This research will document differences in the perceived motivational elements that influenced master science hobbyists/citizen scientists to choose a science career or not. The results can inform federal, state, and local policies for supporting youth and adults engaged in free choice learning. Results of this research will inform the design of intervention/recruitment programs and ISE outreach initiatives. Potential audiences include ISE institutions (e.g. museums and science centers), organizations with links to STEM (e.g. scouts, boys/girls clubs) and pre- and college initiatives that seek to influence career choices and life-long science interests. The proposed cross-disciplinary approach will promote new understandings of complex issues related to motivation, retention, career selection, leisure activities, engagement with formal and informal educational environments, gender and ethnicity, communities of practice and changes in interests over time. Members of the advisory board have expertise in assessment and measurement and will work closely with the project team to conduct a detailed examination of methodologies and analyses at all phases of the project.
DATE: -
TEAM MEMBERS: Melissa Jones Thomas Andre