Skip to main content

Community Repository Search Results

resource project Exhibitions
Many urgent environmental challenges, from soil degradation and water pollution to global climate change, have deep roots in how complex systems impact human well-being, and how humans relate to nature and to each other. Learning In and From the Environment through Multiple Ways of Knowing (LIFEways) is based on the premise that Indigenous stewardship has sustained communities on these lands since time immemorial. This project is collaboratively led by the Indigenous Education Institute and Oregon State University’s STEM Research Center, in partnership with Native Pathways and the Reimagine Research Group, Swinomish Indian Tribal Community, Oregon Museum of Science and Industry, World Forestry Center, and a national park network in the Pacific Northwest. The aim of this partnership is to deepen the informal learning field’s understanding of how Indigenous ways of knowing are currently or can be included in outdoor learning environments such as parks, nature preserves, and tribal lands. The project will share practices that center Indigenous worldviews to build awareness of their value and enhance STEM learning in outdoor settings. These approaches engage Native community members in continuing their traditional knowledge and practices, and help non-Native audiences learn from the dynamic interrelationships of the environment in authentic, respectful ways.

Conventional outdoor education is mostly grounded in Western concepts of “conservation” and “preservation” that position humans as acting separately from nature. This Research in Service to Practice project will identify “wise practices” that honor Indigenous ways of knowing, and investigate current capacities, barriers and opportunities for amplifying Indigenous voices in outdoor education. A team of Native and non-Native researchers and practitioners will draw upon Indigenous and Western research paradigms. Methods include Talk Story dialogues, a landscape study using national surveys, case studies, and a Circle of Relations to interpret and disseminate research findings. LIFEways will also document partnership processes to continue to build on the Collaboration with Integrity framework between tribal and non-tribal organizations (Maryboy and Begay, 2012). Findings from the LIFEways project will be shared broadly through a series of webinars, local and national meetings, conferences, and publications.
DATE: -
TEAM MEMBERS: Martin Storksdieck Larry Campbell Nancy Maryboy David Begay Shelly Valdez Jill Stein Jamie Donatuto Ashley Teren Ka’iu Kimura Chris Cable Victoria Coats Andrew Haight Tim Hecox Elexis Fredy Greg Archuleta Geanna Capitan Vernon Chimegalrea Joe E Heimlich Herb Lee David Lewis Carol McBryant Sadie Olsen Laura Peticolas Stephanie Ratcliffe Darryl Reano Craig Strang Kyle Swimmer Polly Walker Tim Watkins Shawn Wilson Pam Woodis
resource project Media and Technology
This project engages pre-college Latinx, Black, and Indigenous learners, educators, and collaborating undergraduates in an international, project-based learning and media-making community in areas of science, technology, engineering, and mathematics (STEM). The project addresses key challenges including broadening participation in informal STEM learning, developing capacity for leading informal STEM programs, and building stronger connections between STEM learning and personal and social identity formation during adolescence. The project’s community of participants is an asset-based learning environment that treats each participant, their background, skills, and interests as uniquely beneficial to the whole. Led by mentors at each hub (teachers, leaders from science organizations, or other out-of-school learning environments), participants collaborate with peers from the US and from other countries. The collaborations encompass a broad spectrum of STEM projects. Participants also create digital media to communicate their projects. The project activities reflect a focus on STEM content, collaboration, and communication, in a global context that includes school-age learners from the US and peers from Central and South America, the Middle East, Asia, and Sub-Sahara. The combination of the sophisticated STEM competencies skills for collaborating across international and cultural boundaries, and media-savvy communication abilities are essential to the nation’s future STEM workforce and to building a scientifically vibrant citizenry.

The project addresses two primary research questions co-developed with teachers and other informal science providers. The first research question involves understanding and optimizing conditions for broadening participation through this type of distributed or virtual collaboration across boundaries of culture, race, gender, ability, nationality, and socioeconomic status. The project features a design experiment by which the overall community of participants comprises four separate hubs, each hosted by the different project partners (primarily teachers). Educators devise, test, and revise alternative designs for organizing STEM collaborations. Publication of these teacher-led designs and their evaluation are among the primary outputs of the project. The designs modify and improve a template developed under this project’s proof-of-concept precursor (NSF1612824). The second research question addresses how growth in STEM abilities, collaboration, and communication mutually reinforce adolescent personal and social identity formation. Participating students in the US will intentionally reflect heterogeneous backgrounds. The project analysis will focus on whether cultural and national cross-boundary collaboration can strengthen the development of learners' personal identity and academic performance. The project methodology relies heavily on quantitative ethnography and epistemic network analysis. This approach enables the creation of visual models that highlight the presence or absence of connections between constructs relevant to each research question, along with changes between and within groups. The constructs include variations of autonomy, competence, and connection (pillars of self-determination theory) in tracing identity formation and STEM abilities. The quantitative ethnography approach provides statistically reliable scaffolding and insights about the hub designs and their efficacy in promoting goals of broadening participation and fostering mutually reinforcing STEM competencies and identity formation. This type of virtual collaboration, crossing boundaries of culture, nationality, ethnicity, age, gender, economic strata, or ability, can realistically be expected to play a significant role in next-generation learning environments, especially through out-of-school activities. The project is expected to reach 120 U.S. and 80 non-U.S. students annually. Research findings, design principles and curricula will be widely disseminated to researchers, designers, program developers, informal science institutions and community organizations.
DATE: -
TEAM MEMBERS: Eric Hamilton Nastassia Jones Danielle Espino Seung Lee
resource project Media and Technology
Increasing the diversity of the Science, Technology, Engineering, and Mathematics (STEM) workforce hinges on understanding the impact of the many related, pre-college experiences of the nation’s youth. While formal preparation, such as high school course-taking, has a major influence, research has shown that out-of-school-time activities have a much larger role in shaping the attitudes, identity, and career interests of students, particularly those who are members of groups historically underrepresented in STEM fields (Black, Indigenous, Latinx, and/or Pacific Islander). A wide range of both innovative adult-led (science clubs, internships, museum-going, competitions, summer camps) and personal-choice (hobbies, family talk, games, simulations, social media, online courses) options exist. This project studies the variety and availability such experiences to pre-college students. The project is particularly interested in how community cultural capital is leveraged through informal activities and experiences, drawing upon the “funds of knowledge” that culturally diverse students bring to their STEM experiences (e.g., high aspirations, multilingual facility, building of sustaining social networks, and the capacity to challenge negative stereotyping). This study has the capability to begin to reveal evidence-based measures of the absolute and relative effectiveness of promising informal educational practices, including many developed and disseminated by NSF-funded programs. Understanding the ecology of precollege influencers and the hypotheses on which they are based, along with providing initial measures of the efficacy of multiple pathways attempting to broaden participation of students from underrepresented groups in STEM majors and careers, will aid decision-making that will maximize the strategic impact of federal and local efforts.

The project first collects hypotheses from the wide variety of stakeholders (educators, researchers, and students) about the kinds of experiences that make a difference in increasing students’ STEM identity and career interest. Identifying the descriptive attributes that characterize opportunities across individual programs and validating a multi-part instrument to ascertain student experiences will be carried out through a review of relevant literature, surveying stakeholders using crowdsourced platforms, and through in-depth interviews with 50 providers. A sample of 1,000 students from 2- and 4-year college and universities, drawn from minority-serving institutions, such as Historically Black Colleges, Hispanic Serving Institutions, and Tribal Colleges and Universities will serve to establish the validity and reliability of the derived instrument and provide estimates of the availability and frequency of involvement. Psychometric methods and factor analysis will guide us in combining related variables into indices that reflect underlying constructs. Propensity score weighting will be employed for estimating effects when exposure to certain OST activities is confounded with other factors (e.g., parental education, SES). Path models and structural equation models (SEM) will be employed to build models that use causal or time related variables, for instance, students’ career interests at different times in their pre-college experience. The study goes beyond evaluation of individual experiences in addressing important questions that will help policy makers, educators, parents, and students understand which OST opportunities serve the diverse values and goals of members of underrepresented groups, boosting their likelihood of pursuing STEM careers. This project is co-funded by the Advancing Informal STEM Learning (AISL) and EHR CORE Research (ECR) programs.
DATE: -
TEAM MEMBERS: Philip Sadler Remy Dou Monique Ross Susan Sunbury Gerhard Sonnert
resource project Exhibitions
The Science Museum of Minnesota (SMM) will collaborate with four community organizations serving Black, Indigenous, and People of Color (BIPOC) audiences to research and develop a novel outdoor makerspace that engages families in STEM learning. A makerspace is a place where people work together on creative, interest driven projects. In working with BIPOC families, the project addresses three forms of historical (and present day) exclusion of community participants, including participation in the design of informal learning experiences, participation in such activities, and overall engagement in STEM. The project aims to develop activities that foster STEM learning using natural materials in an outdoor makerspace, informed through robust collaboration with local communities. This project will result in an outdoor makerspace at SMM that will include 3-4 settings (approximately 2500 square feet total) that house and support multiple making activities in an outdoor context. The proposed work will contribute to advancing knowledge through exploring how BIPOC families define learning in makerspaces and how younger children can be fully engaged in family learning. The project will share the inclusive design and community collaboration practices developed through this work with other museums, maker educators, and other community organizations that can develop or expand their own outdoor makerspaces in ways that will respect and reflect BIPOC families’ perspectives.

BIPOC families will join museum staff as contributors in the development and iteration of an outdoor makerspace and collaborators in the development of generalized design principles and dissemination of the research. Visitor-captured video of engagement in the outdoor makerspace, surveys, and memos from design meetings with community partners serve as the foundation for the process of aligning design and development of outdoor informal science education spaces with community needs and values. All research activities will be guided by a culturally responsive research framework and use strategies to ensure the multicultural validity such as video meaning-making with family research participants and member-checking instruments, data analyses, and findings with Design Partners. Project research will address three questions: (1) What are the characteristics of family learning in an outdoor nature-situated makerspace, including how BIPOC families identify and describe STEM learning and how outdoor spaces can be built to support BIPOC families’ perspectives? (2) How can the space be built to support multi-age families to engaged in making, including a focus on what design elements support preschool learner’s engagement and sustained participation by other family members? and (3) How do the design principles for making with widely available materials translate from indoor to outdoor spaces and materials? Research findings, design principles and community engagement guides will be widely disseminated to researchers, designers, program developers, informal science institutions and community organizations.
DATE: -
resource project Public Programs
This project provides opportunities for Indigenous youth to transform and be transformed by opportunities for STEAM innovation and knowledge building. This project will create opportunities outside of the classroom to invest in youths’ engagement, and interest, and self-efficacy in STEAM by supporting explorations in community settings that value multiple languages and ways of knowing. Through this project, youth can engage in pressing community needs—such as climate change impacts, food and water security, chronic health crises, and out-migration— with community experts, elders, and knowledge holders. The project will expand the picture of what Informal STEAM learning and meaningful engagement in STEAM looks like in Pacific Island contexts. It will employ a collaborative research framework to investigate how Informal STEAM learning activities that foster intergenerational learning—particularly the exploration of traditional stories and the creation of prototypes, storytelling packages, and hands-on models that illustrate Indigenous STEAM practices—impact youths’ engagement and interest in STEAM and self-efficacy over time. By building the capacity of participants—particularly Pacific Islander youth—to become co-researchers, -evaluators and -designers, the project will cultivate spaces for participants to advocate for their interests, perspectives, and needs. This research within the Pacific region is important for fostering science literacy and broadening participation in STEAM fields since early interest in science is a potential indicator of future STEAM interest and career choices.

The goal of the project is to investigate how youth’s inductive exploration of local technologies featured in Indigenous stories impact their engagement and interest in STEAM, Informal STEAM learning, and future decision making that affect youth participation in STEAM pathways. The project will be implemented in Guam, the Republic of the Marshall Islands, and the Federated States of Micronesia (comprising the four states of Chuuk, Kosrae, Pohnpei, and Yap) and will address the core research question: To what extent does youths’ participation in STEAM-based storytelling and story exploration lead to increases in youths’ engagement and interest in STEAM and self-efficacy over time? The project approaches story exploration as a cultural and metalinguistic process to investigate a story not solely as an artifact or a process, but as a doorway to investigations of history, Indigenous STEAM, and local innovation. Two cohorts of youth participants will engage in summer and spring out-of-school programs led by elders, partner organizations, and project staff through which youth investigate storytelling, design, research practice, and service learning. Each cohort will also create digital storytelling packages and/or model kits to share with audiences through participant-designed community-level and cross-region sharing events. The project is expected to reach 140 youth and 30 elders. To measure learning outcomes, the project builds upon extant tools to gauge Informal STEAM learning engagement. Lessons about the application of these tools will contribute to the Informal STEAM learning knowledge base—especially regarding underrepresented communities in STEAM. Community-based participatory research (CBPR) is the overarching theoretical and methodological framework for the project and will engage participants as co-researchers through multiple methods of observation, data gathering, and analysis. The project will also create community-driven research opportunities that advances the generation of knowledge on topics that are often left unexplored because: (1) Micronesians as underrepresented minorities are not usually at the table during research design; (2) non-Micronesian/Indigenous epistemologies are usually privileged throughout the research; and (3) there is a lack of trust when any outsider asks to look in, especially when racialized colonial histories still leave daily impacts. This project encourages all participants to consider and develop answers to this question: Stewards of whose knowledge? Research findings and educational materials and resources will be disseminated to researchers, program developers, informal science institutions, partner organizations, formal and informal educators, and communities.
DATE: -
TEAM MEMBERS: Emerson Odango Corrin Barros
resource project Public Programs
This Innovations in Development project supports racially and ethnically diverse youth in learning about climate resilience in informal settings, including community centers, afterschool programs, and museums. The project aims to: (1) build the capacity of community organizations to implement youth programming on climate resilience; (2) increase youth knowledge, skills, and self-efficacy associated with climate resilience (also referred to as environmental health literacy for climate resilience); and (3) explore how collaborating research universities and community organizations engage diverse youth in informal STEM learning. Project partners include the UNC Institute for the Environment, the University of Washington-Interdisciplinary Center for Exposures, Diseases, Genomics and Environment, the North Carolina Museum of Natural Sciences, Juntos NC, and the Duwamish River Community Coalition (DRCC). Juntos NC and DRCC actively engage Latino and Indigenous youth in their programming and seek to implement resilience-focused programming that supports youth science learning and leadership development.

Together, informal educators and participating youth will develop locally relevant solutions to climate impacts in their communities. Youth will interact with university-based climate scientists and educators to collect and analyze data and will participate in resilience-focused dialogue, planning, and actions in their communities. Youth will share what they learn with their families and peers through family events and teen summits. The project will engage dozens of educators in community organizations and at least 250 youth, who will share what they learn with their families and communities, reaching hundreds more people through communications and local action projects. Mixed-methods assessment will provide insight into the extent participating youth (a) develop environmental health literacy for climate resilience, and (b) take action to address resilience in their home communities. The team will assess how these outcomes vary by location, and the implications of any variation on potential for project replication. A participatory evaluation, led by an external evaluator, will provide insight into empowerment outcomes. Findings will be disseminated to professional audiences at local and national conferences; and curricular materials from this project will be disseminated through the project website.
DATE: -
TEAM MEMBERS: Kathleen Gray Sarah Yelton
resource project Professional Development, Conferences, and Networks
Centering Native Traditional Knowledge within informal STEM education programs is critical for learning for Native youth. In co-created, place-based learning experiences for Native youth, interweaving cultural traditions, arts, language, and community partnerships is vital for authentic, meaningful learning. Standardized STEM curricula and Western-based pedagogies within the mainstream and formal education systems do not reflect the nature of Native STEM knowledge, nor do they make deep connections to it. The absence of this knowledge base can reinforce a deficit-based STEM identity, which can directly impact Native youths’ participation and engagement in STEM. Reframing STEM education for Native youth to prioritize the vitality of community and sustainability requires active consideration of what counts as science learning and who serves as holders and conduits of STEM knowledge. As highly regarded holders of traditional and western STEM knowledge, Native educators and cultural practitioners are critical for facilitating Native youths’ curiosity and engagement with STEM. This Innovations in Development project is Native-led and centers Native knowledge, voice, and contributions in STEM through a culturally based, dual-learning approach that emphasizes traditional and western STEM knowledge. Through this lens, a network of over a dozen tribal nations across 20 U.S. states will be established to support and facilitate the learning of Traditional and Western STEM knowledge in a culturally sustaining manner. The network will build on existing programs and develop a set of unique, interconnected, and synchronized placed-based informal STEM programs for Native youth reflecting the distinctive cultural aspects of Native American and Alaska Native Tribes. The network will also involve a Natives-In-STEM Role Models innovation, in which Native STEM professionals will provide inspiration to Native youth through conversations about their journeys in STEM within cultural contexts. In addition, the network will cultivate a professional network of STEM educators, practitioners, and tribal leaders. Network efforts and the formative evaluation will culminate in the development and dissemination of a community-based, co-created Framework for Informal STEM Education with Native Communities.

Together with Elders and other contributors of each community, local leads within the STEM for Youth in Native Communities (SYNC) Network team will identify and guide the STEM content topics, as well as co-create and implement the program within their sovereign lands with their youth. The content, practitioners, and programming in each community will be distinct, but the community-based, dual learning contextual framework will be consistent. Each community includes several partner organizations poised to contribute to the programming efforts, including tribal government departments, tribal and public K-12 schools, tribal colleges, museums and cultural centers, non-profits, local non-tribal government support agencies, colleges and universities, and various grassroots organizations. Programmatic designs will vary and may include field excursions, summer and after school STEM experiences, and workshops. In addition, the Natives-In-STEM innovation will be implemented across the programs, providing youth with access to Native STEM professionals and career pathways across the country. To understand the impacts of SYNC’s efforts, an external evaluator will explore a broad range of questions through formative and summative evaluations. The evaluation questions seek to explore: (a) the extent to which the culturally based, dual learning methods implemented in SYNC informal STEM programs affect Native youths’ self-efficacy in STEM and (b) how the components of SYNC’s overall theoretical context and network (e.g., partnerships, community contributors such as Elders, STEM practitioners and professionals) impact community attitudes and behaviors regarding youth STEM learning. Data and knowledge gained from these programs will inform the primary deliverable, a Framework for Native Informal STEM Education, which aims to support the informal STEM education community as it expands and deepens its service to Native youth and communities. Future enhanced professional development opportunities for teachers and educators to learn more about the findings and practices highlighted in the Framework are envisioned to maximize its strategic impact.
DATE: -
TEAM MEMBERS: Juan Chavez Daniella Scalice Wendy Todd
resource project Media and Technology
Three-dimensional digital models are increasingly prevalent in preserving tangible and intangible aspects of Indigenous material heritage. Yet, there are no comprehensive, clearly laid-out best practices that can guide researchers, Indigenous communities, and museum personnel in designing ethically sound and socially engaged 3D heritage preservation projects. The use of 3D technologies for heritage preservation and providing public access to digital 3D collections is well-established in the European context. While there have been several robust efforts on digitizing European national heritage, in the U.S. context, the focus often involves work with Indigenous heritage, instantly placing 3D projects into a post-colonial research paradigm with a complex set of ethical ramifications. This research examines emerging thoughts from the European context and connects them with best practices in digital Indigenous data management to identify practices that contribute to cultures of academic integrity that are inclusive of all stakeholder voices. This work fosters ethical cultures of STEM through the development of a comprehensive Responsible Conduct of Research guiding document that can be adapted to address culture-specific Indigenous perspectives as well as project-specific challenges in future 3D heritage preservation endeavors.

Project goals are accomplished through workshops and virtual collaborations that bring together researchers, Indigenous community members, and heritage preservation professionals with previous experience in the responsible management, protection, and sharing of Indigenous digital data and the use of 3D technology for heritage preservation. The collaboratively produced guidelines outline ethical considerations that can be used in developing: 1) partnerships with origin/descendant communities, 2) institution- and collection-specific museum policies on using 3D technology, 3) Tribal policies for culturally appropriate use of 3D technologies, and 4) training material and curriculum that integrates with other research compliance regulations pertaining to heritage preservation. The project explores the questions that have emerged through previous experiences using 3D technologies to preserve Indigenous ancestral heritage. These questions include the factors contributing to developing ethically sound 3D heritage preservation projects; the practices useful in 3D projects to foster a culture of integrity that equally engages academic and Indigenous perspectives; consideration for what constitutes Responsible Conduct of Research in using 3D technologies to preserve Indigenous cultural heritage; and addressing practice-based questions that contribute to understanding ethical challenges in digitally preserving and presenting Indigenous heritage. The project situates 3D modeling and heritage representation as part of the larger discourse on decolonizing core methodologies in museum management and anthropological collection practices. Results from this work can be adapted to training future researchers and digital heritage management professionals and creating meaningful partnerships in heritage documentation. This research cultivates cultures of academic integrity by informing heritage management policy on the critical importance of heritage ethics for the creation and management of 3D digitization projects involving Indigenous collections. This award is funded by the Directorate of Geosciences and the Directorate of Education and Human Resources.
DATE: -
TEAM MEMBERS: Medea Csoba-DeHass Lori Collins
resource project Public Programs
Communities with the highest risk of climate change impacts may also be least able to respond and adapt to climate change, which highlights a specific need for inclusive Science, Technology, Engineering, and Mathematics (STEM) strategies. This Pilot and Feasibility project builds on the success of US Cooperative Extension Service programs that empower volunteers to conduct outreach in their own communities. It focuses on climate change, and seeks to co-design an informal STEM climate science curriculum, called Climate Stewards, in collaboration with community members from groups often underrepresented in STEM, including indigenous and Latinx communities, as well as rural women. The project is designed to strengthen community awareness as well as prioritize community voices in climate change conversations. The knowledge and skills obtained by Climate Stewards and their communities will allow for more involvement in decisions related to climate adaptation and mitigation in their communities and beyond. After establishing a proof of concept, the project seeks to expand this work to more rural and urban communities, other communities of color, and additional socioeconomically disadvantaged communities.

Grounded in the theory of diffusion of innovation as a means for volunteers to communicate information to members of a social system, this project seeks co-create a retooled Climate Stewards curriculum using inclusive and adaptive strategies. Community collaboration and involvement through new and existing partnerships, focus groups, and meetings will determine what each community needs. During the program design phase, community members can share their concerns regarding climate change as well as the unique characteristics and cultural perspectives that should be addressed. The collaboration between extension and education leverage resources that are important for developing a robust implementation and evaluation process. This project is expected to have a significant influence on local and national programs that are looking to incorporate climate change topics into their programming and/or broaden their reach to underrepresented communities. The hypotheses tested in this project describe how inclusion-based approaches may influence competencies in STEM topics and their impact on communities, specifically willingness to take action. Hypothesis 1: STEM competencies in climate issues increase with interactive and peer learning approaches. Hypothesis 2: Community participation in the co-creation of knowledge about climate change, by integrating their values and objectives into the climate change education program, increases people's motivation to become engaged in climate change adaptation and mitigation strategies.

This Pilot and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Patricia Townsend Roslynn McCann Melissa Kreye Arthur Nash
resource project Informal/Formal Connections
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

This project will create the specification for a learner-controlled system to represent youth learning in Out-of-School-Time (OST) settings, to improve access to future Science, Technology, Engineering, and Mathematics (STEM) learning opportunities. For learners to pursue a STEM education, and STEM careers, they must be able to move through "gatekeeping" mechanisms that filter and sort students based on factors such as prior coursework and grades, teacher recommendations, and language proficiency assessments. Even though abundant evidence shows that such measures fail to capture all important aspects of STEM learning, they are traditionally relied upon in secondary and post-secondary STEM education contexts as indicators of preparation for future STEM learning. These systemic processes exclude certain minoritized groups, including Black, Indigenous, and other people of color (BIPOC), low income, immigrant and refugee youth, and youth learning English, from high-quality secondary and post-secondary STEM learning experiences because existing measures do not validate their prior knowledge and experiences. Yet, minoritized youth often engage in OST STEM learning opportunities, where their readiness for future learning opportunities is nurtured and valued. One challenge is to reliably document this readiness in a usable format so youth can access new STEM learning opportunities, especially in post-secondary contexts. This project builds strategically upon earlier work focusing on the democratization of STEM learning through vehicles such as digital micro-credentials or badges, and upon digital portfolios. Missing from these earlier efforts was integration of these platforms with an infrastructure that connected youth learners to OST STEM learning organizations and to future STEM learning opportunities. This Innovations in Development project brings together minoritized youth and their families, OST providers, and admissions officials from higher education institutions to explore the needed design features for OST "transcripts," and user stories that describe how software systems can support their creation and sharing. Grounded in the concept of mastery-based learning, where learning is demonstrated via action, learners will control what is included in the transcript so that they create their own narratives about their learning experiences. Recognizing that documentation is not the key focus of most STEM OST organizations, this project will provide direct support for identifying and codifying learning goals or outcomes that learners and their families find relevant and important within different STEM activities. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The project will take a Design-Based Implementation Research (DBIR) approach and proceed by convening representatives from three main stakeholder groups (youth and their families, OST providers, and admissions staff) to engage in a series of discovery and design activities. Project partners, including the Mastery Transcript Consortium (MA), STEAMville (IL), STUDIO (WA), and Wolverine Pathways (MI), will work together with the PIs to design templates learners can use to characterize STEM learning from each provider, aligned with different STEM learning foci (e.g., computer science, computational thinking, cross-cutting concepts, science and engineering practices, and mathematics). Data collected from these sessions will be used to address the following research questions: (1) How and why do youth and families from minoritized communities understand and choose to participate in STEM OST learning opportunities?, (2) How do youth understand and interact with STEM OST learning opportunities?, (3) How do OST providers characterize the STEM learning goals in the activities they provide?, and (4) How do college admissions personnel view the role of informal STEM learning as part of a holistic admissions process? This work has the potential to further the understanding of how OST learning can be documented and shared as a part of the larger ecosystem of STEM learning trajectories. By deeply engaging the perspectives and voices of minoritized youth and families, this project seeks to develop a valid and trustworthy instrument that recognizes and serves their STEM learning, thus broadening the participation of minoritized youth in STEM education and careers. This work will also benefit OST providers, by translating the documentation of youth STEM learning into forms that may help communicate the efficacy of their programs in ways that further their missions, including communicating evidence of effectiveness to both future participants and funders.
DATE: -
TEAM MEMBERS: Barry Fishman Leslie Herrenkohl Katie Headrick Taylor Nichole Pinkard
resource project Media and Technology
The Ice Worlds media project will inspire millions of children and adults to gain new knowledge about polar environments, the planet’s climate, and humanity’s place within Earth’s complex systems—supporting an informed, STEM literate citizenry. Featuring the NSF-funded THOR expedition to Thwaites glacier, along with contributions of many NSF-supported researchers worldwide, Ice Worlds will share the importance of investments in STEM with audiences in giant screen theaters, on television, online, and in other informal settings. Primary project deliverables include a giant screen film, a filmmaking workshop for Native American middle school students that will result in a documentary, a climate storytelling professional development program for informal educators, and a knowledge-building summative evaluation. The project’s largest target audience is middle school learners (ages 11-14); specific activities are designed for Native American youth and informal science practitioners. Innovative outreach will engage youth underserved in science inspiring a new generation of scientists and investigative thinkers. The project’s professional development programs will build the capacity of informal educators to engage communities and communicate science. The Ice Worlds project is a collaboration among media producers Giant Screen Films, Natural History New Zealand, PBS, and Academy Award nominated film directors (Yes/No Productions). Additional collaborators include Northwestern University, The American Indian Science and Engineering Society, the Native American Journalism Association, a group of museum and science center partners, and a team of advisors including scientific and Indigenous experts associated with the NSF-funded Study of Environmental Arctic Change initiative.

The goals of the project are: 1) to increase public understanding of the processes and consequences of environmental change in polar ecosystems, 2) to explore the effectiveness of the giant screen format to impart knowledge, inspire motivation and caring for nature, 3) to improve middle schoolers’ interest, confidence and engagement in STEM topics and pursuits—broadly and through a specific program for Native American youth, and 4) to build informal educators’ capacity to share stories of climate change in their communities. The main evaluation questions are 1) to what extent does the Ice World film affect learning, engagement, and motivation around STEM pursuits and environmental problem solving 2) what is the added value of companion media for youth’s giant screen learning over short and longer term, and 3) what are the impacts of the culturally based Native American youth workshops.

The evaluation work will involve a Native American youth advisory panel and a panel of science center practitioners in the giant screen film’s development and evaluation process. Formative evaluation of the film will involve recruiting youth from diverse backgrounds, including representation of Native youth, to see the film in the giant screen theater of a partner site. Post viewing surveys and group discussions will explore their experience of the film with respect to engagement, learning, evoking spatial presence, and motivational impact. A summative evaluation of the completed film will assess its immediate and longer term impacts. Statistical analyses will be conducted on all quantitative data generated from the evaluation, including a comparison of pre and post knowledge scores. An evaluation of the Tribal Youth Media program will include a significant period of formative evaluation and community engagement to align activities to the needs and interests of participating students. Culturally appropriate measures, qualitative methods and frameworks will be used to assess the learning impacts. Data will be analyzed to determine learning impacts of the workshop on youth participants as well as mentors and other stakeholder participants. Evaluation of the community climate storytelling professional development component will include lessons learned and recommendations for implementation.
DATE: -
TEAM MEMBERS: Deborah Raksany Karen Elinich Andrew Wood Patricia Loew
resource project Public Programs
This innovations in development project will develop and study the Wéetespeme Stewardship Program (Wéetespeme: “I am of this land”). Tribal led, the project supports and studies climate science learning experiences grounded in traditional ecological knowledge, culturally relevant pedagogy, and land education pedagogy. Nez Perce high-school youth and college-age adults will choose specific species and places; work with tribal resource management offices to learn to monitor, assess, and mitigate climate impacts; and receive mentorship from tribal elders, as they co-develop climate-science adaptive management plans for local concerns. Adaptive management plans may include topics such as: drought and extreme weather impacts, shifts in animal populations and migration patterns, cultivating traditional foods, and managing important cultural sites. The Tribal research team will collaborate with curriculum developers and Indigenous graduate student(s) from the University of Idaho and Northwest Youth Corps to explore how a STEM curriculum centered on cultural identity and traditional knowledge can align with Indigenous youths’ identities, resource responsibilities, and understanding and interest in STEM career pathways within the Tribe and in the region. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants. This project’s approach to curriculum development, and youths’ identity and career interest development, will contribute to the informal STEM learning field’s nascent understanding of Tribal-driven education efforts, and approaches to blending or bridging traditional ecological knowledge and Western ways of knowing. With co-funding from the Directorate of Geosciences’ (GEO), this project will further advance efforts related to the application of traditional ecological knowledge to the geosciences, including Indigenous workforce development opportunities and research experiences for Indigenous graduate students.

Over a two-year duration, the study will address two research questions. 1) How and in what ways does a culturally relevant out-of-school curriculum support Indigenous youths’ understanding of their own identity, resource responsibility, and possible career pathways, including those on Tribal land? 2) How and in what ways does a culturally relevant out-of-school curriculum develop Indigenous youths’ ability to monitor and address climate change impacts, to protect, preserve and recover land relationships that are central to their cultural identities and values? Thirty-two college-age young adults and high-school youth (sixteen of each age group) will participate in the Wéetespeme Stewardship Program and research study. Indigenous research methodologies will guide the approach to investigating and sharing Indigenous youths’ understanding of their own identity, resource responsibility, possible career pathways, and learning experiences within the Wéetespeme Stewardship Program activities. Two Indigenous graduate students will play a central role in conducting the research, supporting systemic impacts within, and beyond, the Tribe. Methods will be embedded in learners’ experiences and will include field journals, adaptive management plans, story maps, and talk circles. Youth will also participate as research partners: understanding the research questions, assisting with the analysis, contributing to interpretation of the findings, and co-authoring manuscripts that share their stories and this work. The informal STEM curriculum will be shared regionally, allowing for Tribes in the plateau region to benefit from culturally relevant approaches youth engagement to support climate resilience. The results of the research will also be shared more broadly, contributing to the emerging knowledge-base about the ways that cultural practices and values, guided by land education pedagogy and the mentorship of traditional ecological knowledge keepers, and embedded in informal STEM learning experiences, can contribute to Indigenous youths’ identities and understanding of, and investment in, local and meaningful environmental resources and STEM career pathways.
DATE: -
TEAM MEMBERS: Nakia Williamson Karla Bradley Eitel Jeff Parker Josiah Pinkham