Auburn University, Alabama State University, Tuskegee University and Vanderbilt University will lead this Design and Development Launch Pilot to form the SouthEast Alliance for Persons with Disabilities in STEM (SEAPD-STEM), eventually creating a network of 21 universities and colleges, as well as additional community colleges and high schools, in the southeastern U.S. and Washington, DC. This project was created in response to the Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program solicitation (NSF 16-544). The INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in science, technology, engineering and mathematics (STEM) discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields. The INCLUDES Design and Development Launch Pilots represent bold, innovative ways for solving a broadening participation challenge in STEM.
The full participation of all of America's STEM talent is critical to the advancement of science and engineering for national security, health and prosperity. Our nation is advancing knowledge and practices to address the STEM education practices for recruiting, better educating, retaining and graduating STEM secondary and postsecondary students with disabilities (SWDs) at our nation's high schools, colleges and universities. However SWDs historically underperform in STEM at the secondary and postsecondary levels. This project, NSF INCLUDES: SEAPD-STEM, has the potential to significantly advance a collaborative approach by a group of organizations to improve the success of SWDs in STEM disciplines.
The project builds on the existing Alabama Alliance for Students with Disabilities in STEM (AASD-STEM), a NSF-funded model, and includes a plan to form a larger regional alliance focused on training STEM SWDs across the academic pathway from high school through postdoctoral training and entry into faculty positions. The collaboration addresses five goals: (1) To increase the quality and quantity of SWDs completing associate, undergraduate, and graduate degrees in STEM disciplines and entering the STEM workforce, (2) To increase the quality and quantity of post-doctoral fellows and junior faculty with disabilities in STEM fields, (3) To improve academic performance of students with disabilities in secondary level science and mathematics courses, (4) To enhance communication and collaboration among post-secondary institutions in addressing the education of SWDs in STEM disciplines, and (5) To assess project activities to understand what works to support the matriculation and retention of STEM SWDs in science followed by broad dissemination through workshops, conference presentations, webinars, and peer-reviewed publications. The team proposes the following project activities in the pilot: (1) Implementing a Bridge Model at 13 partner institutions, including Alabama State University, Auburn University, Auburn University Montgomery, Gallaudet University, Jackson State University, Middle Tennessee State University, Southern Union State Community College, Troy University, Tuskegee University, the University of Alabama Birmingham, the University of Tennessee, the University of West Georgia and Xavier University of Louisiana (2) Implementing SEAPD-STEM training workshops, (3) Implementing NSF INCLUDES Alliances planning workshops in each participating state, at Kennesaw State University, Tougaloo College, the University of Alabama in Hunstville, Vanderbilt University and Xavier University of Louisiana, (4) Gathering enrollment, retention, and graduation baseline data for STEM SWDs by race, ethnicity, and gender at 21 colleges and universities institutions, (5) Identifying high schools and school districts for each of the participating institutions for outreach activities, (6) Adding at least one community college to partner with SEAPD-STEM college or university, (7) Engaging additional partners including national and local labs, non-profits, federal agencies, industry, foundations, and state governments for additional funding and/or internships for participating SEAPD-STEM students. The project team will implement a plan to scale approaches and develop an alliance of institutions to maximize potential project outcomes now and in the future.
The Association of Public and Land-Grant Universities (APLU) will lead this Design and Development Launch Pilot to conduct activities aimed to increase the number of STEM faculty at APLU member universities from underrepresented and traditionally underserved groups: Women, historically underrepresented minorities (URM), persons with disabilities (PWD), and people from low socioeconomic backgrounds. This project was created in response to the Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program solicitation (NSF 16-544). The INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in science, technology, engineering and mathematics (STEM) discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields. The INCLUDES Design and Development Launch Pilots represent bold, innovative ways for solving a broadening participation challenge in STEM.
The full participation of all of America's STEM talent is critical to the advancement of science and engineering for national security, health and prosperity. Our nation is advancing knowledge and practices to address a STEM achievement and the graduation gap between postsecondary STEM students who are women, URM, PWD, and persons from low socioeconomic backgrounds and males, non-URM, non-PWD, and persons from middle and upper socioeconomic backgrounds. At the same time U.S. universities and colleges struggle to recruit, retain and promote a diverse STEM faculty as role models and academic leaders for historically underrepresented and traditionally underserved students to learn from, to work with and to emulate. Recent NSF reports indicate that URM STEM associate and full professors occupy 8% of the senior faculty positions at all 4-year colleges and universities and about 6% of these positions at the nation's most research-intensive institutions. The APLU INCLUDES: A Collective Impact Approach to Broadening Participation in the STEM Professoriate has the potential to advance a national network of organizations to improve the representation of women, URMs, PWDs and persons from low socioeconomic backgrounds in STEM faculty positions, eventually providing URM STEM role models to STEM undergraduate and graduate students at postsecondary academic institutions across the Nation.
APLU will work closely with multiple organizations to address key objectives, including the American Association for the Advancement of Science, the Center for the Integration of Research, Teaching and Learning, the Collaborative on Academic Careers in Higher Education, the Committee on Institutional Cooperation (recently renamed the Big Ten Academic Alliance), the Council of Graduate Schools, the Florida Education Fund's McKnight Doctoral Fellowship Program, Southern Regional Education Board State Doctoral Scholars Program and the University of California's Office of the President. Together this network plans to connect APLU member institutions and experts to (1) develop and test a set of diagnostic tools and practices for recruiting, hiring, retaining and supporting faculty, to (2) identify a set of institutional activities to increase participation along STEM pathways toward the professoriate, to engage a group of institutions to collectively implement one or more of the activities, and to (3) evaluate the adequacy and coverage current data sources and metrics available to track students from entry into postsecondary education through the professoriate.
DATE:
-
TEAM MEMBERS:
Howard GobsteinAlan MabeTravis YorkChristine KellerKimberly Griffin
The Department of Computer Science and Engineering and DO-IT IT (Disabilities, Opportunities, Internetworking and Technology) at the University of Washington propose to create the AccessComputing Alliance for the purpose of increasing the participation of people with disabilities in computing careers. Alliance partners Gallaudet University, Microsoft, the NSF Regional Alliances for Persons with Disabilities in STEM (hosted by the University of Southern Maine, New Mexico State University, and UW), and SIGACCESS of the Association for Computing Machinery (ACM) and collaborators represent stakeholders from education, industry, government, and professional organizations nationwide.
Alliance activities apply proven practices to support persons with disabilities within computing programs. To increase the number of students with disabilities who successfully pursue undergraduate and graduate degrees, the alliance will run college transition and bridge, tutoring, internship, and e-mentoring programs. To increase the capacity of postsecondary computing departments to fully include students with disabilities in coursers and programs, the alliance will form communities of practice, run capacity-building institutes, and develop systemic change indicators for computing departments. To create a nationwide resource to help students with disabilities pursue computing careers and computing educators and employers, professional organizations and other stakeholders to develop more inclusive programs and share effective practices, the alliance will create and maintain a searchable AccessComputing Knowledge Base of FAQs, case studies, and effective/promising practices.
These activities will build on existing alliances and resources in a comprehensive, integrated effort. They will create nationwide collaborations among individuals with disabilities, computing professionals, employers, disability providers, and professional organizations to explore the issues that contribute to the underrepresentation of persons with disabilities and to develop, apply and assess interventions. In addition, they will support local and regional efforts to recruit and retain students with disabilities into computing and assist them in institutionalizing and replicating their programs. The alliance will work with other Alliances and organizations that serve women and underrepresented minorities to make their programs accessible to students with disabilities. Finally they will collect and publish research and implementation data to enhance scientific and technological understanding of issues related to the inclusion of people with disabilities in computing.
DATE:
-
TEAM MEMBERS:
Richard LadnerLibby CohenSheryl BurgstahlerWilliam McCarthy
Schools throughout America put an emphasis on instruction in mathematics. Students who are visually impaired should not be left out of this national effort (Kapperman & Sticken, 2003). It has been established that children who are visually impaired should learn mathematical skills at the same level as their sighted peers (Tindell, 2006). However, the acquisition of mathematical skills can be more difficult for students with visual impairments due to the abstract nature of many essential concepts and the highly visual presentation of the subject (Kapperman, Heinze, & Sticken, 2000). This
What can a visually impaired student achieve in art education? Can visually impaired students teach sighted students about elements of perception that sighted students would not normally consider? Are the legal moves towards rights to equal access for visually impaired people useful in asserting that visually impaired students can gain as much from gallery exhibits as sighted students can? In this article, these questions are studied in a practice report of a course involving visually impaired and sighted students working in groups, studying in a museum and creating art work at schools for the
This article seeks to reflect on mediation in museums based on experiences that occurred in the “Learning in order to Teach” Project. In this case, the mediation acquires specific characteristics because it deals with young deaf people learning art-related contents in order to teach other youth in their first language. The most interesting aspect of this encounter between museum and deaf culture is a mutual, immediate and highly visible influence. While museum-goers and professionals understand that the “gestures” used by the deaf are not random (rather, on the contrary, they make up a
DATE:
TEAM MEMBERS:
Daina LeytonCibele LucenaJoana Zatz Mussi
This special report describes NSF INCLUDES (Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science), a comprehensive initiative to enhance U.S. leadership in science and engineering discovery and innovation by proactively seeking and effectively developing science, technology, engineering and mathematics (STEM) talent from all sectors and groups in our society. By facilitating partnerships, communication and cooperation, NSF aims to build on and scale up what works in broadening participation programs to reach underserved populations
These slides were presented at the NSF Advancing Informal STEM Learning (AISL) Principal Investigators' Meeting held in Bethesda, MD from February 29-March 2, 2016. The presentation describes NSF INCLUDES, a funding opportunity that leverages collective impact strategies to broaden participation in STEM.
As part of a grant from the National Science Foundation, the National Federation of the Blind (NFB) is conducting regional STEM workshops in partnership with local science museums, entitled NFB STEM2U, for blind youth [youth], grades 3 – 6 and 9-12. During this second regional workshop in Boston, the NFB operated two different programs simultaneously: one program for youth, and a second program for their parents/caregivers. A third program, for Boston Museum of Science staff, was conducted earlier to prepare the museum staff to assist with the youth program. A separate report will discuss the
As part of a grant from the National Science Foundation, the National Federation of the Blind (NFB) is conducting regional STEM workshops in partnership with local science museums, entitled NFB STEM2U, for blind youth [youth], grades 3 – 6 and 9-12. During the third regional workshop in Columbus, Ohio, the NFB operated two different programs simultaneously: one program for youth, and a second program for their parents/caregivers. A third program, for COSI (science center) staff, was conducted earlier to prepare the museum staff to assist with the youth program. A separate report will discuss
Students with special educational needs score significantly below their peers across several measures of science achievement. However, educational approaches that provide appropriate scaffolding and support, such as the inquiry-based science writing heuristic described in this paper, can benefit special educational needs students and ensure an equitable experience for all.
The Badges for College Credit project designs and researches: (1) a digital badge system that leads to college credit as the context for investigating how to integrate badges with learning programs; (2) how to assess learning associated with badges; and (3) how badges facilitate learning pathways and contribute to science identity formation. The project is one of the first efforts to develop a system to associate informal science learning with college credit. The project will partner with three regional informal science institutions, the Pacific Science Center, the Future of Flight, and the Seattle of Aquarium, that will facilitate activities for participants that are linked to informal science learning and earning badges. The project uses the iRemix platform, a social learning platform, as a delivery system to direct participants to materials, resources, and activities that support the learning goals of the project. Badges earned within the system can be exported to the Mozilla Open Badges platform. Participants can earn three types of badges, automatic (based on participation), community (based on contributions to building the online community), and skill (based on mastery of science and communication) badges. Using a learning ecologies framework, the project will investigate multiple influences on how and why youth participate in science learning and making decisions. Project research uses a qualitative and quantitative approach, including observations, interviews, case studies, surveys, and learning analytics data, and data analytics. Project evaluation will focus on the nature and function of the collaboration, and on the scale-up aspects of the innovation and expansion, by: (1) analyzing and documenting effective procedures,and optimal contexts for the dissemination of the model and (2) by analyzing the collaboration between informal science organizations and higher education.
DATE:
-
TEAM MEMBERS:
Carrie TzouKaren LennonAmanda GoertzGray Kochlar-Lindgren