Physical science and engineering remain the least diverse of all STEM fields---with regard to women, underrepresented minorities, and persons with disabilities---across all levels of STEM education and training. SCI-STEPS is an NSF INCLUDES Design and Development Launch Pilot that will address this persistent challenge by developing a complete end-to-end pipeline (or system of pathways) from the beginning of college to the PhD, and then into the workforce. Many isolated efforts to broaden participation have shown promise, but they have not produced big enough impact. SCI-STEPS represents a concerted set of coordinated interventions---consciously facilitated, systemically linked, and purposefully disseminated. SCI-STEPS represents a broad regional network among major research universities, Historically Black Colleges and Universities, comprehensive universities, community colleges, national labs, and major scientific organizations. The goal of the network is to ensure that underrepresented individuals in the physical sciences and engineering can get from their starting point in STEM higher education---freshmen at 2-year or 4-year college---through the higher education pathways leading to an appropriate terminal degree and employment in the STEM workforce.
Women, underrepresented minorities, and persons with disabilities collectively represent the majority of college-age individuals entering higher education with an expressed interest in physical science and engineering. A growing body of research indicates that academic and social integration may be even more influential than academic abilities for retention of students. Thus, interventions aimed at stemming the losses of these individuals must ultimately be aimed at changing the system---including unwelcoming institutional climates, racial/ethnic/gender stereotyping, a lack of mentors with whom to identify, and evaluation methods that emphasize conformity over individual capabilities---rather than changing the individual. The SCI-STEPS pilot focuses effort on institutional readiness for implementation of best practice interventions at four key junctures: (i) college freshman to sophomore; (ii) undergraduate to graduate; (iii) PhD to postdoc; and (iv) postdoc to workforce.The pilot will proceed in three steps: (1) a planning phase, (2) development of an initial end-to-end pathways model with four Juncture Transition teams, and (3) scale-up of the SCI-STEPS "network of networks" with all initial partners. By addressing these objectives through a collective impact framework and embedded research, this pilot will demonstrate how best-practice interventions at each pathway juncture can be dovetailed and scaled up across a broad range of institutional types and across a large but distinct geographical area. Addressing these objectives will thus also serve to advance Broadening Participation efforts at a national scale, by suggesting the forms of institutional partnerships and best-practices that may inform other alliances in other STEM disciplines and/or different regional areas.
DATE:
-
TEAM MEMBERS:
Keivan StassunNicole JosephKelly Holley-BockelmannWilliam RobinsonRoger Chalkley
resourceprojectProfessional Development, Conferences, and Networks
The NSF INCLUDES program supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities.
The Algebra Project, in partnership with the Young People's Project, will convene a conference on inclusion in science, technology, engineering and mathematics(STEM) higher education in support of the National Science Foundation's Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) initiative. The conference will examine a critical question: What roles and structures are needed for a mini-backbone organization in order to scale a "bottom up" model of social change into an organized, full scale collective impact model? Additionally, the conference will develop participants' capacity to link action on the various design challenges, and backbone structures, to future actions that meet the needs of a potential Alliance on this Broadening Participation Challenge and others facing similar challenges.
Five pre-conference design teams will focus on key components to improve education of students from underrepresented and disadvantaged populations over a four-month period prior to the convening of the stakeholders in St. Louis, Missouri in 2017.
This article discusses Purdue University's Center for Global Soundscapes' five-day camp program for students with visual impairments. The program follows an inquiry-based learning approach to explore concepts fundamental to soundscape ecology.
As part of a grant from the National Science Foundation, the National Federation of the Blind (NFB) developed, implemented, and evaluated the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through this grant, the NCBYS extended opportunities for informal science learning for the direct benefit of blind students by conducting six NFB STEM2U regional programs included programs for blind youth, their parents/caregivers, blind teen mentors (apprentices), and museum educators.
The evaluation study supports the project Distance Learning Education Programs at the Saint Louis Zoo. To better understand what teachers want and need, and the characteristics of the settings in which their students learn, the Zoo conducted an online survey of the teachers of students with special needs in May 2014. The purpose of this evaluation was to clarify and expand the survey findings to support the design, development, and implementation of the Zoo distance learning curriculum so that it works effectively across a variety of school settings for K12 students with special needs and
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Blind youth are generally excluded from STEM learning and careers because materials for their education are often composed for sighted individuals. In this proposed Innovations in Development project, the PIs suggest that spatial acuity is an important element in order for blind persons to understand physical and mental structures. Thus, in this investigation, efforts will be made to educated blind youth in the discipline of engineering. A total of 200 blind students, ages 12-20 along with 30 informal STEM educators will participate in the program. This effort is shared with the National Federation of the Blind, Utah State University, the Science Museum of Minnesota, and the Lifelong Learning Group.
The National Federation of the Blind, in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota will develop a five-year Innovations in Development project in order to broaden the participation of blind students in STEM fields through the development of instruction and accessible tools that assess and improve the spatial ability of blind youth. The partnership with the Science Museum will facilitate the creation of informal science content for students and professional development opportunities for informal educators. Evaluation will be conducted by Lifelong Learning Group of the Columbus Center of Science and Industry. Activities will begin in year one with a week-long, engineering design program for thirty blind high-school students at the Federation of the blind headquarters in Baltimore. Year two will feature two similarly sized programs, taking place at the Science Museum. While spatial ability is linked to performance in science, research has not been pursued as to how that ability can be assessed, developed, and improved in blind youth. Further, educators are often unaware of ways to deliver science concepts to blind students in a spatially enhanced manner, and students do not know how to advocate for these accommodations, leading blind youth to abandon science directions. Literature on the influences of a community of practice on youth with disabilities, as well as nonvisual tools for experiencing engineering, is lacking. This project will advance understanding of how blind people can participate in science, and how spatial ability can be developed and bolstered through informal engineering activities and an existing community of practice.
This is the final report from the external evaluator of the project that created MedLab, an interactive learning experiences for Chicago area middle and high school students. This external evaluator's final report summarizes the outcomes and impacts of the five-year (2012-2017) funding compared to project objectives. The aim of the project was to use in person and online curricula, including a humanoid patient simulator (iStan®), to build interest in and knowledge of health sciences and health careers, with a particular focus on local community health concerns. An additional goal was to
DATE:
TEAM MEMBERS:
Christina Shane-SimpsonJohn FraserSusan HannahKin KongPatricia WardRabiah Mayas
With this Phase I funding, the project team will develop and test a prototype of the Toddler App and Cane which is intended to improve functional and adaptive school readiness skills for toddlers with visual impairments. The prototype will include a wearable hardware-based cane that wraps around a child's waist and provides tactile and audio cues to facilitate walking, a curriculum with game activities and walking routes, and an app that provides updates to special education practitioners and parents on their children's progress. In a pilot study with 10 toddlers with visual impairments, and their teachers and parents, the researchers will examine whether the prototype functions as planned, whether toddlers are engaged while using the prototype, and if teachers and parents believe the fully developed intervention will lead to increases in independence and school readiness.
DATE:
-
TEAM MEMBERS:
Elga Joffee
resourceprojectProfessional Development, Conferences, and Networks
Science, Technology, Engineering, and Mathematics (STEM) education and workforce development in the US are critical for global competitiveness and national security. However, the U.S. is facing a decrease in entrants to the STEM workforce which is not shared evenly across demographics. Specifically, women, underrepresented minorities, and people with disabilities obtain STEM degrees and enter the STEM workforce at levels significantly below their demographic representation in the U.S. The National Science Foundation's (NSF) Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities. This conference focuses on collective impact as a strategy to address the broadening participation challenge. Collective impact is distinguished from collaboration in that the alliances require a backbone organization to succeed. The goal of this project is to organize a conference to inform backbone organizations toward broadening participation in STEM education and the workforce.
The conference takes place at the University of California, San Diego January 20-22, 2017 and brings together Project Investigators from the Design and Development pilots, along with stakeholders in broadening participation in STEM on a local, regional, and national scale. The overarching goal of the conference is to develop the knowledge base of participants in the application of the collective impact model, and the role of backbone organizations to address specific issues and transition points of the STEM pipeline. Conference participants include K-12, community college, and university representatives; leaders in graduate education, policy makers and private sector employers. The conference includes plenary sessions, flash presentations, and interactive workgroups engaged in the development of collective impact approaches to problems in Broadening Participation in STEM. Workgroups share their insights, and audience feedback is electronically curated via Twitter and Storify. To respond in real time to participant questions or insights this conference uses the innovative platform, IdeaWave, to solicit, sort and value ideas from the attendees before, during, and after the conference. Conference results are integrated into a final report to inform the NSF INCLUDES Alliances backbone organizations. The intellectual merit of the project is that it advances knowledge about the barriers to broadening participation in STEM education and the workforce, the collective impact model, and the role of the backbone organization to guide the vision and strategy, and support the activities, evaluation, and communication of the NSF INCLUDES Alliances. The broader impact of this project is that it benefits society by informing backbone organizations, which leads to broadening participation of the STEM workforce and ultimately increases U.S. global competitiveness and national security.
DATE:
-
TEAM MEMBERS:
Kim Barrett
resourceprojectProfessional Development, Conferences, and Networks
The National Science Foundation's (NSF)Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities.
The University of Akron will convene a two-day conference to develop a backbone organization to support the preparation and advancement of underrepresented minorities K-12 through careers in the biosciences, a high growth area for engineering (biomechanics, biometrics and biomaterials). This conference draws on the expertise of a wide range of organizations, professional associations, K-20+, community based organizations, industry and museums. The intent is to strengthen the network among participants and leverage learning on how to engage youth in the biosciences.
The results of this first conference will be a white paper that will be disseminated to several professional societies that outlines a backbone infrastructure for addressing both short-term and longer-term aspects of an NSF INCLUDES alliance centered on bioengineering, biomechanics, biomedical engineering and biomaterials.
DATE:
-
TEAM MEMBERS:
Brian DavisCarin HelferRouzbeh Amini
resourceprojectProfessional Development, Conferences, and Networks
The Association of Public and Land-Grant Universities (APLU) will lead this Design and Development Launch Pilot to conduct activities aimed to increase the number of STEM faculty at APLU member universities from underrepresented and traditionally underserved groups: Women, historically underrepresented minorities (URM), persons with disabilities (PWD), and people from low socioeconomic backgrounds. This project was created in response to the Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program solicitation (NSF 16-544). The INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in science, technology, engineering and mathematics (STEM) discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields. The INCLUDES Design and Development Launch Pilots represent bold, innovative ways for solving a broadening participation challenge in STEM.
The full participation of all of America's STEM talent is critical to the advancement of science and engineering for national security, health and prosperity. Our nation is advancing knowledge and practices to address a STEM achievement and the graduation gap between postsecondary STEM students who are women, URM, PWD, and persons from low socioeconomic backgrounds and males, non-URM, non-PWD, and persons from middle and upper socioeconomic backgrounds. At the same time U.S. universities and colleges struggle to recruit, retain and promote a diverse STEM faculty as role models and academic leaders for historically underrepresented and traditionally underserved students to learn from, to work with and to emulate. Recent NSF reports indicate that URM STEM associate and full professors occupy 8% of the senior faculty positions at all 4-year colleges and universities and about 6% of these positions at the nation's most research-intensive institutions. The APLU INCLUDES: A Collective Impact Approach to Broadening Participation in the STEM Professoriate has the potential to advance a national network of organizations to improve the representation of women, URMs, PWDs and persons from low socioeconomic backgrounds in STEM faculty positions, eventually providing URM STEM role models to STEM undergraduate and graduate students at postsecondary academic institutions across the Nation.
APLU will work closely with multiple organizations to address key objectives, including the American Association for the Advancement of Science, the Center for the Integration of Research, Teaching and Learning, the Collaborative on Academic Careers in Higher Education, the Committee on Institutional Cooperation (recently renamed the Big Ten Academic Alliance), the Council of Graduate Schools, the Florida Education Fund's McKnight Doctoral Fellowship Program, Southern Regional Education Board State Doctoral Scholars Program and the University of California's Office of the President. Together this network plans to connect APLU member institutions and experts to (1) develop and test a set of diagnostic tools and practices for recruiting, hiring, retaining and supporting faculty, to (2) identify a set of institutional activities to increase participation along STEM pathways toward the professoriate, to engage a group of institutions to collectively implement one or more of the activities, and to (3) evaluate the adequacy and coverage current data sources and metrics available to track students from entry into postsecondary education through the professoriate.
DATE:
-
TEAM MEMBERS:
Howard GobsteinAlan MabeTravis YorkChristine KellerKimberly Griffin
NASA’s Science Mission Directorate (SMD) explores the Earth, the Sun, our solar system, the galaxy and beyond through four SMD divisions: Earth Science, Heliophysics, Planetary Science and Astrophysics. Alongside NASA scientists, teams of education and public outreach (EPO) specialists develop and implement programs and resources that are designed to inspire and educate students, teachers, and the public about NASA science.