Skip to main content

Community Repository Search Results

resource project Exhibitions
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

The Accessible Oceans study will design auditory displays that support learning and understanding of ocean data in informal learning environments like museums, science centers, and aquariums. Most data presentations in these spaces use visual display techniques such as graphs, charts, and computer-generated visualizations, resulting in inequitable access for learners with vision impairment or other print-related disabilities. While music, sound effects, and environmental sounds are sometimes used, these audio methods are inadequate for conveying quantitative information. The project will use sonification (turning data into sound) to convey meaningful aspects of ocean science data to increase access to ocean data and ocean literacy. The project will advance knowledge on the design of auditory displays for all learners, with and without disabilities, as well as advance the use of technology for STEM formal and informal education. The study will include 425 participants but will reach tens of thousands through the development of education materials, public reporting, and social media. The study will partner with the Smithsonian National Museum of Natural History, Woods Hole Oceanographic Institution Ocean Discovery Center, the Georgia Aquarium, the Eugene Science Center, the Atlanta Center for the Visually Impaired, and Perkins School for the Blind.

The project will leverage existing educational ocean datasets from the NSF-funded Ocean Observatories Initiative to produce and evaluate the feasibility of using integrated auditory displays to communicate tiered learning objectives of oceanographic principles. Integrated auditory displays will each be comprised of a data sonification and a context-setting audio introduction that will help to make sure all users start with the same basic information about the phenomenon. The displays will be developed through a user-centered design process that will engage ocean science experts, visually impaired students and adults (and their teachers), and design-oriented undergraduate and graduate students. The project will support advocacy skills for inclusive design and will provide valuable training opportunities for graduate and undergraduate students in human-centered design and accessibility. The project will have foundational utility in auditory display, STEM education, human-computer interaction, and other disciplines, contributing new strategies for representing quantitative information that can be applied across STEM disciplines that use similar visual data displays. The project will generate publicly accessible resources to advance studies of inclusive approaches on motivating learners with and without disabilities to learn more about and consider careers in STEM.

This Pilots and Feasibility Studies project is supported by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Amy Bower Carrie Bruce Jon Bellona
resource project Media and Technology
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.

Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Jamie Larsen Ibrahim Dahlstrom-Hakki
resource evaluation Media and Technology
Supported by the National Science Foundation, the Global Soundscapes! Big Data, Big Screens, Open Ears project employs a variety of informal learning experiences to present the physics of sound and the new science of soundscape ecology. The interdisciplinary science of soundscape ecology analyzes sounds over time in different ecosystems around the world. The major components of the Global Soundscapes project are an educator-led interactive giant-screen theater show, group activities, and websites. All components are designed with both sighted and visually impaired students in mind. Multimedia
DATE:
TEAM MEMBERS: Barbara Flagg Allan Brenman
resource project Public Programs
Chemistry is an important and widely relevant field of science. However, when compared with other STEM content areas, chemistry is under-represented in U.S. science museums and other informal educational environments. This project will build, and build knowledge about, innovative approaches to delivering informal science learning activities in chemistry. The project will not only increase public interest and understanding of chemistry but also increase public perception of chemistry's relevance and increase the public's self-efficacy with respect to chemistry. This project outcomes will include a guide for practitioners along with activity materials that will be packaged into a kit, distributed, and replicated for use by informal science educators, chemists, and chemistry students at 250 sites across the U.S. The project team will reach out to organizations that serve diverse audiences and diverse geographic locations, including organizations in rural and inner-city areas. The kits will provide guidance on engaging girls, people with various abilities, Spanish speakers, and other diverse audiences, and include materials in Spanish. Written guides, training videos, and training slides will be included to support training in science communication in general, as well as chemistry in particular. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.

This project will take an innovative approach to develop informal educational activities and materials about chemistry. Rather than starting with content goals, the project will start with a theoretical framework drawn from research about affecting attitudes about science related to interest, relevance, and self-efficacy. A design-based research approach (DBR) will be used to apply that framework to the development of hands-on educational activities about chemistry, while also testing and modifying the framework itself. (DBR blends empirical educational research with the theory-driven design of learning environments.) Existing or new educational activities that appear to embody key characteristics defined in the framework will be tested with public audiences for their impact on visitors. Researchers and educators will determine how different characteristics of the educational activities defined in the framework affect the outcomes. The activities will be modified and tested iteratively until the investigators achieve close alignment between framework and impacts.. The project team will continue the design-based research approach both to examine groups of activities in which synergies can have impacts beyond single interactions as well as to examine varied ways of training facilitators who can also significantly affect outcomes. In this way, the project will generate knowledge about how kits of hands-on informal learning activities can stimulate attitudes of interest, relevance, and self-efficacy with respect to the neglected field of chemistry. The project teams will broadly disseminate project outcomes within the educational research, science and informal Science, Technology, Engineering and Mathematics (STEM) education communities. While this project will focus on chemistry, the strategies it will develop and test through a design-based research process will provide valuable insight into effective approaches for informal STEM education more broadly.
DATE: -
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The National Association of Math Circles (NAMC) will convene the Math Circle-Mentor and Partnership (MC-MAP) Workshop in late 2016. The proposed MC-MAP workshop will build the field's understanding of the training content and mechanisms that enhance the knowledge and skill development of participants in Math Circles. The workshop will bring mentors from experienced Math Circle leaders together with novice Math Circle leaders to develop the expertise of the notice leaders and their group to develop their expertise in facilitating math circle activities and in organizing related events. The approximately 180 Math Circles currently operating across the nation enlist mathematics professionals to share their passion for mathematics with K-12 students, teachers, and the general public in contexts that emphasize exploration, problem solving and discovery. This initial conference and Math Circle trainings informed by this conference will help build a community of practice around Math Circles through which novice and existing leaders are connected, encouraged and inspired.

The MC-MAP workshop will include structured planning as well as guided observation and structured debriefing of a demonstration Math Circle sessions. The workshop design will be grounded in research related to effective adult learning and to discovery-based mathematics. The workshop will serve as a training prototype that will assist the National Association of Math Circles to identify effective training formats and materials for both experienced and novice Math Circle leaders. Pre- and post- conference surveys of Math Circle leaders will produce data to be used in planning and designing future trainings. The NAMC will share key findings from the workshop evaluation and workshop resources not only with its membership, but also with other mathematics K-12 outreach programs. Workshop materials will address recruiting and serving diverse participants in Math Circles, including girls and women, persons with disabilities, students from varied socioeconomic backgrounds and underrepresented minorities in STEM.
DATE: -
resource research Professional Development, Conferences, and Networks
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes a project designed to increase informal learning opportunities for blind youth in STEM.
DATE:
TEAM MEMBERS: National Federation of the Blind Mark Riccobono
resource project Media and Technology
The Global Soundscapes! Big Data, Big Screens, Open Ears Project uses the new science of soundscape ecology to design a variety of informal science learning experiences that engage participants through acoustic discovery Soundscape ecology is an interdisciplinary science that studies how humans relate to place through sound and how humans influence the environment through the alteration of natural sound composition. The project includes: (1) an interface to the NSF-funded Global Sustainable Soundscapes Network, which includes 12 universities around the world; (2) sound-based learning experiences targeting middle-school students (grades 5-8), visually impaired and urban students, and the general public; and (3) professional development for informal science educators. Project educational components include: the first interactive, sound-based digital theater experience; hands-on Your Ecosystem Listening Labs (YELLS), a 1-2 day program for school classes and out-of school groups; a soundscape database that will assist researchers in developing a soundscape Big Database; and iListen, a virtual online portal for learning and discovery about soundscape. The project team includes Purdue-based researchers involved in soundscape and other ecological research; Foxfire Interactive, an award-winning educational media company; science museum partners with digital theaters; the National Audubon Society and its national network of field stations; the Perkins School for the Blind; and Multimedia Research (as the external evaluator).
DATE: -
TEAM MEMBERS: Bryan Pijanowski Daniel Shepardson Barbara Flagg
resource project Media and Technology
The proposal intends to develop software that, when combined with the OMNI device, produces a virtual touch sensation that allows the blind to "touch" surfaces such as Mars, Earth's Moon, etc. The experience is multimedia as users can get sight, sound, and touch at the same time. The proposal does a solid job of describing a well-constructed and well-designed plan. The collaborative group works to bring together a strong body of STEM material, a highly skilled project team, and a diverse audience to assess the material. The team brought together to implement the proposal is a good one and includes the Institute for Scientific Research, NASA IV and V Independent Verification and Validation, Facility Educator Resource Center, Alderson Broadus College, Davis & Elkins College, and the West Virginia Schools for the Deaf and Blind. Although NASA is a project partner, the reviewers encourage the project proposer to continue building direct NASA funding. For example, a NASA space grant may be a good dissemination vehicle in the future. Reviewers were impressed with the various project elements: the mobile unit, pre- and post- standards based lessons, hypothesis testing with immediate feedback. The evaluation and dissemination plans provide for effective and immediate impact on a statewide and national level. The project provides for broader impact as the multi-media tools will be of assistance to other groups of students with disabilities as well.
DATE: -
TEAM MEMBERS: Marjorie Darrah Patricia Harris Sharmistha Roy Amy Blake Rebecca Giorcelli
resource evaluation Museum and Science Center Programs
Star Wars: Where Science Meets Imagination is a National Science Foundation funded project which developed a national traveling exhibition on science and technology themes depicted in the Star Wars movies. The Museum of Science, Boston (MOS) developed the exhibition in collaboration with Lucasfilm Ltd. and Science Museum Exhibit Collaborative (SMEC). The exhibition will travel to members of the SMEC in Los Angeles, Portland, Fort Worth, St. Paul, Columbus, Philadelphia, and Boston. Other venues will display the exhibition after the Collaborative tour. Tisdal Consulting was contracted to
DATE:
TEAM MEMBERS: Carey Tisdal Museum of Science
resource evaluation Media and Technology
Given its ongoing commitment to universal design and the integration of technologies into the museum experience, the Museum of Science decided to employ a handheld Multimedia Tour to accompany Star Wars: Where Science Meets Imagination, an exhibition about the real world meeting Star Wars technologies. With the help of leading tour guide developer, Antenna Audio, a 22-stop tour was produced featuring narration, Behind the Scenes interviews with individuals who had worked on the films, Star Wars film clips, still photos and the ability to send information home. An American Sign Language version
DATE:
TEAM MEMBERS: Elissa Chin Christine Reich Museum of Science
resource project Broadcast Media
This planning activity will produce a prototype film on Spanish horses and conduct 10 focus group discussions to determine: audience interest, background knowledge, what viewers would like to see in this documentary, language barriers, cultural barriers, and how the film could be structured to help the public and teachers interact with children. The focus groups will target the follow groups: (1) middle school teachers, (2) elementary school teachers, (3) families with young children, (4) Hispanic families, (5) American Indian families, (6) youth ages 13-19, (7) horse lovers and those involved in horse activities, (8) senior citizens and individuals with disabilities, (9) documentary, museum exhibit and website production professionals, and (10) media and museum marketing professionals. The effort is intended to guide development of a PBS documentary, an interactive website, a companion book, and a museum exhibit on the origins, evolution, migration and impact of Spanish horses. STEM content in mathematics, genetics, paleontology, chemistry, evolution, and animal behavior, integrated with history, will be incorporated into the scripts for this diverse array of media platforms. The project also presents an opportunity to present in a very interesting and real sense the scientific process used for discovery. In addition to producing the prototype film and conducting focus group discussions, this planning grant will help to: clarify the responsibilities of all of the participants, especially the international participants; clarify the contributions from each discipline and scientist; plan in detail ways to achieve the greatest understanding with the anticipated diverse audiences; select the best geographic region, graphics, media, and animation; and establish realistic budgets and elements for production and post-production. Collaborators include: New Mexican Horse Project, New Mexico Museum of Natural History and Science, Habitat Media, University of New Mexico and Institute for Social Research, Cambridge University, Texas A &M University, Universidad Nacional Autonoma de Mexico, Selinda Research Associates, and PBS.
DATE: -
TEAM MEMBERS: Paul Polechla
resource project Media and Technology
The large format film unit at NOVA/WGBH Boston, in association with the Liberty Science Center, is producing a 40-minute large format film about the science of volcanology. Volcano: Lost City of Pompeii will tell the story of a diverse group of scientists working together, each in his or her specific field, to understand better how Vesuvius can reasonably be expected to behave - today and in the years to come. Following the scientific teams, the film will impart a basic understanding of magma flow and plate tectonics, the geological building blocks out of which volcanoes emerge. The film will blend geology with archaeology to tell an ongoing detective story - a present-day scientific investigation that integrates state of the art techniques and technology with ancient evidence derived from buildings, victims' remains, and vivid eyewitness accounts that go back nearly 2,000 years to the eruption of Vesuvius in 79 A.D. The range of scientific disciplines involved in the film includes: geochemistry, geology, geophysics, remote sensing, plate tectonics, seismology, archaeology, and volcanology. The film will be available with both captioning for the hearing impaired and visual description for visually impaired members of the audience. The film will be supported by an extensive educational outreach plan that includes: Pompeii Earth Science Exploration, a program targeting underserved and disadvantaged youth at 100 Boys & Girls Clubs nationwide; Pompeii Museum Toolkit, a blueprint enabling museums to integrate existing exhibitry with use of the film and including models for outreach initiatives built around the film; Pompeii Activity Guide, an activity guide for us with upper elementary and middle school youth in both informal and form science education settings, and; Pompeii Idea Handbook, a booklet for museums that shares successful outreach programs implemented by museums showing the film during the first year. Paula Apsell, Executive Producer of N OVA and Director of the WGBH Science Unit, will be the PI. The Co-Executive Producer will be Susanne Simpson who previously produced such large format films as Storm Chasers and To the Limit. The Key Scientific Advisor will be Richard Fisher of the University of California, Santa Barbara. Others on the advisory committee include Lucia Civetta, Director of Osservatorio Vesuvio; Diane Favro, Assoc. Prof. in the School of Arts and Architecture at UCLA; Grant Heiken, President of the Earth and Environmental Science Division of Los Alamos National Laboratory and President of the International Society of volcanology; Dan Miller, Chief of the U.S. Geological Survey's Disaster Assistance Program; Haraldur Sigurdsson, Professor in the Graduate School of Oceanography at the University of Rhode Island; and Barbara Tewksbury, Professor of Geology at Hamilton College and past president of the National Association of Geoscience Teachers. Emyln Koster, President and CEO of the Liberty Science Center, will act as key education advisor.
DATE: -
TEAM MEMBERS: Paula Apsell Susanne Simpson