This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project fosters participatory science learning in rural agricultural communities.
The project is supported under the NSF Science, Engineering and Education for Sustainability Fellows (SEES Fellows) program, with the goal of helping to enable discoveries needed to inform actions that lead to environmental, energy and societal sustainability while creating the necessary workforce to address these challenges. Sustainability science is an emerging field that addresses the challenges of meeting human needs without harm to the environment, and without sacrificing the ability of future generations to meet their needs. A strong scientific workforce requires individuals educated and trained in interdisciplinary research and thinking, especially in the area of sustainability science. With the SEES Fellowship support, this project will enable a promising early career researcher to establish herself in an independent research career related to sustainability. This project builds upon Resiliency Theory and theories of applied community participation to explore two specific contexts of participatory communication (i.e., processes of collective learning and shared meaning) at the science-society interface: (1) adaptive co-management meetings in New Mexico and Oklahoma, and (2) existing education efforts by drought scientists at two Great Plains universities (Oklahoma State University and University of Nebraska-Lincoln). A mixed methods approach (including, household surveys, oral histories, key informant interviews, and pilot tests) will model community-partnership capacity for drought adaptation in Cimarron (OK) and Union (NM) Counties, and assess the impact of community-academic partnerships on drought literacy and adaptive capacity across the Great Plains. Research in adaptive co-management meetings and interactive media (as contexts for participatory communication between scientists and citizens) provides the context for innovative case study research on the role of public communication about science in community drought adaptation.
Collaboration in case study research with Host Mentor Vadjunec and outreach efforts with Partner Institution Mentor Thomas (UNL) offers a unique opportunity to research the intersections of participatory communication and scientific literacy about the human and climatic drivers of extreme drought. The core research questions addressed by this proposal are, (1) What formal and informal pathways, players, and partnerships exist for participatory communication between scientists and citizens about drought vulnerability and adaptation, (2) How does communication about drought risk and recovery inform the effective diffusion and translation of drought literacy efforts in the Great Plains, and (3) How can we design forums and spaces for sustained interaction (i.e., engagement and collective learning) between stakeholders involved in adaptive drought communication? The project objectives uniquely related to advancing research at the intersections of sustainability science and education are, (1) to identify dimensions of community and partnership capacity for drought education and pathways of adaptive drought communication across scales, (2) to advance dynamic participatory models which assist in the adaptive co-management of water resources in local communities (i.e., increasing citizen-science dialogue, mobilizing community leaders, and fostering the drought education partnerships), and (3) to design and measure the success of drought literacy efforts based on inputs from sustainability scientists at various stages of community decision-making. The adaptive drought co-management workshops in NM and OK provide spaces for stakeholder interaction, which may lead to new approaches, innovations, and learning outcomes for communities in those regions. Outreach partnerships with UNL maximize dissemination of user-friendly and culturally-relevant drought outreach products, including a project website to consolidate scientific knowledge about drought in the Great Plains and interactive media templates. Interdisciplinary collaborations and research findings will inform efforts in academic community partnerships for sustainable practices across many NSF-supported disciplines.
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
Currently, many museums present histories of science and technology, but very few are integrating scientific activity--observation, measurement, experimentation-with the time- and place-specific narratives that characterize history-learning experiences. For the Prairie Science project, Conner Prairie is combining proven science center-style activities, developed by the Science Museum of Minnesota, with family-engagement strategies developed through extensive research and testing with audiences in historical settings. The goal of this integration is to create guest experiences that are rich in both STEM and historical content and encourage family learning. One key deliverable of this project is the Create.Connect gallery, which is currently installed at Conner Prairie. Create.Connect allows the project team to evaluate and research hands-on activities, facilitation strategies and historic settings to understand how these elements combine to encourage family conversations and learning around historical narratives and STEM content. For example, in one exhibit area families can experiment with creating their own efficient wind turbine designs while learning about the innovations of the Flint & Walling windmill manufacturing company from Indiana. The activity is facilitated by a historic interpreter portraying a windmill salesman from 1900. The interpreter not only guides the family though the process of scientific inquiry, but shares his historic perspective on wind power as well. Two other exhibit areas invite hands-on exploration of electrical circuits and forces in motion as they connect to stories from Indiana history. Evaluation and research findings from the Create.Connect exhibit will be used to develop a model that can guide other history institutions that want to incorporate STEM content and thinking into their exhibits and interpretation. By partnering with the Science Museum of Minnesota, we will combine the experience of science center professionals and history museum professionals to find the best practices for incorporating science activities into historic settings. To ensure that this dissemination model is informed from many perspectives, Conner Prairie has invited the participation of four history museums: The Museum of America and the Sea, Mystic, Connecticut; the California State Railroad Museum, Sacramento, California; the Wabash County Historical Society, Wabash, Indiana; and the Oliver H. Kelley Farm, Elk River, Minnesota. Each of the four participants will install history-STEM exhibit components which will be connected to location-specific historic narratives. Drawing on the staff experience and talents of participant museums, this project will develop realistic solutions to an array of anticipated barriers. These issues and the resulting approaches will become part of a stronger, more adaptable dissemination model that will support history museums in creating STEM-based guest experiences.
ISE Research: Contextualizing Science Learning and Motivation in Rural and Indigenous Adolescents through Mapping Sustainable Practices is a three-year interdisciplinary research project. Researchers from the University of New Hampshire will investigate impacts of contextualization on science learning, motivation, and positive attitudes toward science of early adolescents from rural and Indigenous populations. The project will yield research findings that can help identify contextualization as a means to engage rural and Indigenous adolescents. The project team uses a systematic approach that incorporates mixed methods of data collection and analysis to learn more about how culture and community (contextualization) impact STEM learning. They hypothesize that contextualizing science learning to culture and community will enhance rural majority and Indigenous early adolescents' science knowledge and positively strengthen motivation and attitudes toward science. Local community and Indigenous group members provide expertise that contributes to the design of the research and the related curriculum as well as the interpretation of the findings. This project will contribute to what we know about how underserved and underrepresented youth engage in STEM learning in relation to their world views. This work will help advance the informal science education field in terms of providing rigorous evidence that can inform theory on learning and motivation among disadvantaged STEM learners as well as address practical issues around the design of STEM programs for rural and Indigenous groups.
DATE:
-
TEAM MEMBERS:
Eleanor AbramsThomas KellyLisa TownsonRuth VarnerMichael Middleton
Water for Life (WfL) is a full scale development youth and community based program; centered on freshwater literacy, water conservation and rainwater harvesting led by the Pacific Resources for Education Learning (PREL) in Hawaii. The goals of the project are to: (a) promote an understanding of water conservation and stewardship in areas lacking adequate quality water supplies and (b) build local capacity among rural communities to develop and employ site specific freshwater harvesting strategies proven to improve water quality. Rural communities within four Pacific Island entities in the U.S. affiliated Freely Associated States (FAS) will participate in WfL activities. PREL is collaborating with a host of organizations (such as the Federated States of Micronesia National Department of Education, Marshall Islands Conservation Society, and the Micronesian Conservation Trust, etc.) to develop and implement all phases of the initiative. This work is already improving the quality of life for hundreds of people in the FAS through water conversation education and improved water quality in local areas. Working closely with site-embedded PREL staff, Core Teams at each site - consisting of 4-6 local leaders from environmental agencies, water/sanitation systems, and education institutions - participated in a 5-day professional learning immersion in May, 2013, to buld capacities to develop and facilitate water conservation and catchment activities at the four target sites in the FAS. The Core Team members at each site now are recruiting and collaborating with local community members to implement site-specific projects that both educate and provide enhanced access to high quality drinking water. Both adults and youth are now engaging in a spectrum of proejcts that address loca needs and priorities through site-specific service learning activities. The site-specific focus in each locale, determined by the local Core Team, is distinct. In Palau, the Core Team has built broader community awareness of water conservation issues, raised the issue of water security in national conversations, engaged remote communities in improving natural rainwater drainage collection systems, and produced youth-oriented educational materials focused on local sites. In Yap, the Core Team members have collaborated with public utilities to install first-flush diverters into community rainwater catchment systems on Yap proper, and now are installing these devices in rainwater catchment systems on Yap's neighbor islands. In Chuuk, groundwater springs in remote communities are being upgraded for improved storage capacity, protection against contamination, and better public access. In Majuro (RMI), public school rainwater catchment systems are being repaired, repainted, cleaned, and upgraded so that schools can and will provide adequate drinking water to students (and to broader segments of the community during droughts). Broad segments of communities, including school classes and clubs, church and civic groups, etc. are becoming increasingly involved in building better water security and resilience for their communities, in preparation for a predicted drought, predicted to hit in the winter of 2014-2015, brought on by an El Nino event now edevelopig in the eastern Pacific. Water for Life has produced a range of locally relevant educational materials, including books, pamphlets, flyers, etc., some in English and others in local languages. Posters and billboards are being produced to enhance and maintain public awareness. Infrastructure projects are enabling better collection of more, higher quality water for drinking. A full-scale water handbook is under development, and this will serve as a basis for a self-contained water 'course' that will be offered through local community colleges. The experiences of project participants are being captured, analyzed, and reported in front-end, formative, and sumative evaluations conducted by David Heil & Associates. Thousands of individuals, comprising large segments of the participating countries' populations, will be directly impacted by the project. The results will be applicable to other remote and rural communities outside of the Pacific distressed by poor water quality and ineffective freshwater harvesting systems.
This award addresses the archaeological issues surrounding the ancestral Pueblo people and their Neolithic revolution or disappearance from the Mesa Verde region of southwestern US. The research describes the people, their living conditions and the environment, their impact on the region and the reason for their exodus to form new societies such as the Tewa-Pueblo society. The research and its results are significant, from both an archaeological and socio-cultural standpoint. An exhibit is planned, to explain and inform the public, in the History Colorado Center in Denver, Colorado, that will transfer this cultural knowledge to the under-served public including Native American and numerous rural residents. The effort is a collaborative endeavor involving the Crow Canyon Archaeological Center in Cortez, Colorado and the new History Colorado Center. The exhibit will feature a typical living area, a scientific area with discussion of tree rings, and an area for discussion with scientific experts. In addition, the deliverable will include a website for further discussion with scientist and for accessing the latest research efforts. The evaluation of this project is extensive starting from an overall evaluation of the museum itself and how to make this exhibit a significant part of the museum, pleasing to the audiences and how to improve its impact once the exhibit is open.
Tornado Alley is a large-format 2D/3D film and comprehensive outreach program exploring the science behind severe weather events. The project focuses on cutting-edge developments in the fields of meteorology and earth science, demonstrating weather monitoring technologies. The project spotlights the current research of the VORTEX 2 (V2) project--the most ambitious effort ever to understand the origins, structure and evolution of tornadoes. The principle target audiences are science museum audiences, with additional special attention to under-served, rural mid-western communities, which will be served by digital 3D screenings. The film will be produced by Graphic Films and Giant Screen Films and distributed by Giant Screen Films. The Franklin Institute will create and manage outreach to professional audiences. Informal Learning Solutions will conduct formative evaluation; RMC Research Corporation will conduct summative evaluation of the project. The film, produced by Paul Novros (PI) and directed by Sean Casey, will collaborate closely with the V2 team, led by Dr. Josh Wurman, and consult with the project advisors to assure clarity and accuracy of the science being presented. A distance-learning initiative to serve educators--both formal and informal--will be managed by Karen Elinich (co-PI) of The Franklin Institute. The project's innovative outreach strategies leverage the mobility of the tornado intercept vehicle (TIV) built by Sean Casey, and the Doppler on Wheels and MGAUS (weather balloon vehicles) to bring scientists and weather-monitoring technology into direct contact with audiences. Outreach to underserved audiences, especially rural audiences, will provide opportunities for interactions with V2 PIs and their students, who serve as role models in science careers. In addition, cyber infrastructure will allow groups of educators to interact remotely with V2 researchers and experience visualizations of weather data. The film and ancillary materials will be translated into Spanish. The project serves as a model for the dissemination of the methods and results of a specific major NSF hard-science research endeavor to the general public through ISE products and activities. The goal of the project is for the audience to increase their knowledge and understanding of the scientific process, learn what meteorologists do, what technologies are used in meteorology and weather science and the factors and forces in meteorological events. It is intended that young audience members will also develop and interest in weather science and potential careers in science and engineering. In the first five years of the film\'s release, the audience is anticipated at 7 million plus. In addition, the live outreach events are expected to engage approximately 40,000-60,000 individuals.
This Full-Scale Informal Science Education award focuses on the physical and social science surrounding the extraction of natural gas from the Marcellus shale formation beneath the surface in north central and western Pennsylvania. The project targets the adult residents of the impacted or soon-to-be-impacted areas of Pennsylvania. This is a complex project involving the disciplines of geology, engineering, chemistry, social science, performance, and land management. Further, the project team includes a mix of physical scientists, educators, theater arts faculty, social scientists and engineers from Pennsylvania State University, the Pennsylvania State Cooperative Extension Service, and Juniata College. The project addresses several potential barriers to communication of science to the public. The proposal team provides four entry points for citizens of rural Pennsylvania to engage in learning about energy, its needs in the Nation, the economics behind these needs, the geology of the shale deposit and how to have productive discussions and make decisions using science-based evidence. The project will engage a multitude of communication mechanisms such as forums, community meetings, theater performances, data centers, blogs and workshops. The Pennsylvania State Extension will play a central role in working at the local level. The project is a complex effort wherein the residents of north central and western Pennsylvania will learn about the science and policies of natural gas extraction and how to derive and use scientific information for decision making. The proposal team will learn how to work and communicate with rural citizens. Further, the team will derive a variety of models from these activities that are likely to be adaptable for use in other areas of the Nation that have natural gas deposits.
DATE:
-
TEAM MEMBERS:
Michael ArthurDouglas MillerJo BrasierRenae Youngs
resourceresearchProfessional Development, Conferences, and Networks
Presentation on NSF grant DRL-0337354 (""TexNET: Texas Network for Exhibit-based Learning and Teaching"") presented at the CAISE Convening on Organizational Networks, November 17th, 2011."") presented at the CAISE Convening on Organizational Networks, November 17th, 2011.
This CRPA award addresses the exciting contemporary chemical science that occurs in interstellar space. The new interferometers coming online this year will enhance this new area of science and further intrigue those who engage. The plan in this award is to build an exhibit that will interest the audience with the space-based aspects, but will also engage them in understanding the chemistry that occurs in space. This is a collaborative effort between the University of Virginia and the Harvard-Smithsonian Astrophysical Observatory. The exhibit is relatively small facilitating its mobility. Thus, the authors will travel the exhibit to smaller venues in rural areas and embrace citizens who are typically under-served by educational opportunities of ISE venues. The target audience is 12-15 year old youths. Clearly, this project is meant to engage the public in both Space science and Chemistry with the ultimate hope that some individuals will even think about careers in the joint science field that is emerging from these types of behaviors.
This project will bring STEM education to rural communities through local public libraries. Museum quality exhibits labelled as "Discover Earth", "Discover Technology", and "Discover Space" will spend 3 months at a series of locations around the Nation. Twenty four medium sized libraries will be chosen for the large exhibits and forty small libraries will be chosen for scaled down versions. The project's intent is to provide exhibits in every state and to reach as many under-represented individuals as possible. The significance of this project is that rural areas of this country are underserved regarding STEM education and since this segment of society is represented by 50-60 million residents, it is important to reach out to them. There is a significant segment of the Nation's population (50-60 million) that is underserved by out-of-school learning venues such as museums and science centers. An earlier phase 1 project demonstrated at 18 sites that rural libraries and librarians could provide STEM education to community members ranging in age from adults to children using these hands-on exhibits. Each exhibit (earth, space or technology) includes information about the topic and technologically enabled models to provide interesting and fun discovery mechanisms. They use common layman friendly language that highlights the most recent discoveries in each area. Each exhibit will be placed in the selected library for 3 months during which the library will organize events to feature and advertise the STEM learning opportunities. Another feature of this project will be to determine the models of learning in library settings and as a function of the demographics. The partners in this project that bring the necessary expertise are the American Library Association, the Afterschool Alliance, the Association of Rural and Small Libraries, the University of Colorado Museum, Datum Advisors, LLC, Evaluation and Research Associates, the Lunar and Planetary Institute, the American Geophysical Union, and the Space Science Institute.